Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural population coding of sound level adapts to stimulus statistics

Abstract

Mammals can hear sounds extending over a vast range of sound levels with remarkable accuracy. How auditory neurons code sound level over such a range is unclear; firing rates of individual neurons increase with sound level over only a very limited portion of the full range of hearing. We show that neurons in the auditory midbrain of the guinea pig adjust their responses to the mean, variance and more complex statistics of sound level distributions. We demonstrate that these adjustments improve the accuracy of the neural population code close to the region of most commonly occurring sound levels. This extends the range of sound levels that can be accurately encoded, fine-tuning hearing to the local acoustic environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adjustments in responses of inferior collicular neurons to the mean sound level.
Figure 2: Adjustments in neural responses improve population coding accuracy near the mean sound level.
Figure 3: Neural adjustments to stimulus variance.
Figure 4: Neural adjustments to stimulus bimodality.
Figure 5: Time course of neural adaptation.
Figure 6: Responses of inferior collicular neurons to changes in sound level.

Similar content being viewed by others

References

  1. Christopher Kirk, E. & Smith, D.W. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. J. Assoc. Res. Otolaryngol. 4, 445–465 (2003).

    Article  CAS  Google Scholar 

  2. Aubin, T. & Jouventin, P. Cocktail-party effect in king penguin colonies. Proc. R. Soc. Lond. B 265, 1665–1673 (1998).

    Article  Google Scholar 

  3. Simmons, J.A., Wever, E.G. & Pylka, J.M. Periodical cicada: sound production and hearing. Science 171, 212–213 (1971).

    Article  CAS  Google Scholar 

  4. Houtsma, A.J., Durlach, N.I. & Braida, L.D. Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching. J. Acoust. Soc. Am. 68, 807–813 (1980).

    Article  CAS  Google Scholar 

  5. Viemeister, N.F. Auditory intensity discrimination at high frequencies in the presence of noise. Science 221, 1206–1208 (1983).

    Article  CAS  Google Scholar 

  6. Viemeister, N.F. Intensity discrimination of noise in the presence of band-reject noise. J. Acoust. Soc. Am. 56, 1594–1600 (1974).

    Article  CAS  Google Scholar 

  7. Evans, E.F. & Palmer, A.R. Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Exp. Brain Res. 40, 115–118 (1980).

    Article  CAS  Google Scholar 

  8. Sachs, M.B. & Abbas, P.J. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am. 56, 1835–1847 (1974).

    Article  CAS  Google Scholar 

  9. Colburn, H.S., Carney, L.H. & Heinz, M.G. Quantifying the information in auditory-nerve responses for level discrimination. J. Assoc. Res. Otolaryngol. 4, 294–311 (2003).

    Article  Google Scholar 

  10. Viemeister, N.F. Intensity coding and the dynamic range problem. Hear. Res. 34, 267–274 (1988).

    Article  CAS  Google Scholar 

  11. Winter, I.M. & Palmer, A.R. Intensity coding in low-frequency auditory-nerve fibers of the guinea pig. J. Acoust. Soc. Am. 90, 1958–1967 (1991).

    Article  CAS  Google Scholar 

  12. Rees, A. & Palmer, A.R. Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. J. Acoust. Soc. Am. 83, 1488–1498 (1988).

    Article  CAS  Google Scholar 

  13. Gibson, D.J., Young, E.D. & Costalupes, J.A. Similarity of dynamic range adjustment in auditory nerve and cochlear nuclei. J. Neurophysiol. 53, 940–958 (1985).

    Article  CAS  Google Scholar 

  14. May, B.J. & Sachs, M.B. Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats. J. Neurophysiol. 68, 1589–1602 (1992).

    Article  CAS  Google Scholar 

  15. Dayan, P. & Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  16. Pouget, A., Dayan, P. & Zemel, R.S. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

    Article  CAS  Google Scholar 

  17. Johnson, D.H. & Kiang, N.Y. Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophys. J. 16, 719–734 (1976).

    Article  CAS  Google Scholar 

  18. Popelar, J., Nwabueze-Ogbo, F.C. & Syka, J. Changes in neuronal activity of the inferior colliculus in rat after temporal inactivation of the auditory cortex. Physiol. Res. 52, 615–628 (2003).

    CAS  Google Scholar 

  19. Kvale, M.N. & Schreiner, C.E. Short-term adaptation of auditory receptive fields to dynamic stimuli. J. Neurophysiol. 91, 604–612 (2004).

    Article  Google Scholar 

  20. Avan, P., Loth, D., Menguy, C. & Teyssou, M. Hypothetical roles of middle ear muscles in the guinea-pig. Hear. Res. 59, 59–69 (1992).

    Article  CAS  Google Scholar 

  21. Carmel, P.W. & Starr, A. Acoustic and nonacoustic factors modifying middle-ear muscle activity in waking cats. J. Neurophysiol. 26, 598–616 (1963).

    Article  CAS  Google Scholar 

  22. Nuttall, A.L. Tympanic muscle effects on middle-ear transfer characteristic. J. Acoust. Soc. Am. 56, 1239–1247 (1974).

    Article  CAS  Google Scholar 

  23. Boyev, K.P., Liberman, M.C. & Brown, M.C. Effects of anesthesia on efferent-mediated adaptation of the DPOAE. J. Assoc. Res. Otolaryngol. 3, 362–373 (2002).

    Article  CAS  Google Scholar 

  24. Westerman, L.A. & Smith, R.L. Rapid and short-term adaptation in auditory nerve responses. Hear. Res. 15, 249–260 (1984).

    Article  CAS  Google Scholar 

  25. Yates, G.K., Robertson, D. & Johnstone, B.M. Very rapid adaptation in the guinea pig auditory nerve. Hear. Res. 17, 1–12 (1985).

    Article  CAS  Google Scholar 

  26. Ingham, N.J. & McAlpine, D. Spike-frequency adaptation in the inferior colliculus. J. Neurophysiol. 91, 632–645 (2004).

    Article  Google Scholar 

  27. Smith, R.L. & Brachman, M.L. Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hear. Res. 2, 123–133 (1980).

    Article  CAS  Google Scholar 

  28. Phillips, D.P. & Hall, S.E. Spike-rate intensity functions of cat cortical neurons studied with combined tone-noise stimuli. J. Acoust. Soc. Am. 80, 177–187 (1986).

    Article  CAS  Google Scholar 

  29. Costalupes, J.A., Young, E.D. & Gibson, D.J. Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. J. Neurophysiol. 51, 1326–1344 (1984).

    Article  CAS  Google Scholar 

  30. Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 (2003).

    Article  CAS  Google Scholar 

  31. Ohzawa, I., Sclar, G. & Freeman, R.D. Contrast gain control in the cat's visual system. J. Neurophysiol. 54, 651–667 (1985).

    Article  CAS  Google Scholar 

  32. Ohzawa, I., Sclar, G. & Freeman, R.D. Contrast gain control in the cat visual cortex. Nature 298, 266–268 (1982).

    Article  CAS  Google Scholar 

  33. Shapley, R.M. & Enroth-Cugell, C. Visual adaptation and retinal gain controls. Prog. Retin. Res. 3, 263–346 (1984).

    Article  Google Scholar 

  34. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R.R. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).

    Article  CAS  Google Scholar 

  35. Fairhall, A.L., Lewen, G.D., Bialek, W. & de Ruyter Van Steveninck, R.R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).

    Article  CAS  Google Scholar 

  36. DiMatteo, I., Genovese, C.R. & Kass, R.E. Bayesian curve-fitting with free-knot splines. Biometrika 88, 1055–1071 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Latham and J. Linden for discussions and C. Micheyl, T. Marquardt and J. Ashmore for critical reading of the manuscript. This work was supported by the Royal National Institute for Deaf People and the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Dean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, I., Harper, N. & McAlpine, D. Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8, 1684–1689 (2005). https://doi.org/10.1038/nn1541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing