Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal

Abstract

We assessed how the visual shape preferences of neurons in the inferior temporal cortex of awake, behaving monkeys generalized across three different stimulus transformations. Stimulus-preferences of particular cells among different polygon displays were correlated across reversed contrast polarity or mirror reversal, but not across figure–ground reversal. This corresponds with psychological findings on human shape judgments. Our results imply that neurons in inferior temporal cortex respond to components of visual shape derived only after figure–ground assignment of contours, not to the contours themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example stimuli.
Figure 2: Correlation plots for a single cell.
Figure 3: Firing rates in response to the 32 stimuli for a single cell.
Figure 4: Peri-stimulus time histograms of firing, using 20 ms bins, for the illustrative cell.
Figure 5: Correlations of ranked stimulus preferences for each of the three transforms in the cell population.
Figure 6: Population response to preferred versus non-preferred stimuli across the three stimulus transforms.
Figure 7: Regions of IT cortex in which the cells were recorded, drawn on sections from the brain of monkey A.

Similar content being viewed by others

References

  1. Baylis, G. C., Rolls, E. T. & Leonard, C. M. Functional subdivisions of the temporal lobe neocortex. J. Neurosci. 7, 330–342 (1987).

    Article  CAS  Google Scholar 

  2. Desimone, R., Schein, S. J., Moran, J. & Ungerleider, L. G. Contour, color and shape analysis beyond the striate cortex. Vision Res. 24, 441–452 (1985)

    Article  Google Scholar 

  3. DiCarlo, J. J. & Maunsell, J. H. R. Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nat. Neurosci. 3, 814–821 (2000)

    Article  CAS  Google Scholar 

  4. Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

    Article  CAS  Google Scholar 

  5. Riesenhuber, M. & Poggio, T. Nat. Neurosci. 3, 1199–1204 (2000).

    Article  CAS  Google Scholar 

  6. Rollenhagen, J. E. & Olson, C. R. Mirror-image confusion in single neurons of the macaque inferotemporal cortex. Science 287, 1506–1508 (2000).

    Article  CAS  Google Scholar 

  7. Rolls, E. T., Judge, S. J. & Sanghera, M. K. Activity of neurons in the inferotemporal cortex of the alert monkey. Brain Res. 130, 229–238 (1977).

    Article  CAS  Google Scholar 

  8. Sary G., Vogel, R. & Orban, G. Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260, 995997 (1993).

    Article  Google Scholar 

  9. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    Article  CAS  Google Scholar 

  10. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  Google Scholar 

  11. Farah, M. J. & Aguirre, G. K. Imaging visual recognition: PET and fMRI studies of functional anatomy of human visual recognition. Trends Cogn. Sci. 3, 179–185 (1999).

    Article  CAS  Google Scholar 

  12. Farah, M. J. Visual Agnosia (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  13. Plaut, D. C. & Farah, M. J. Visual object representation: Interpreting neurophysiological data within a computational framework. J. Cogn. Neurosci. 2, 320–343 (1990)

    Article  CAS  Google Scholar 

  14. Rubin, E. Visuell Wahrgenommee Figuren (Gyldendalske Boghandel, Copenhagen, Germany, 1915).

    Google Scholar 

  15. Baylis, G. C. & Driver, J. One-sided edge-assignment in vision: 1. Figure-ground segmentation and attention to objects. Curr. Dir. Psychol. Sci. 4, 140–146 (1995).

    Article  Google Scholar 

  16. Driver, J. & Baylis, G. C. One-sided edge-assignment in vision: 2. Part decomposition, shape description, and attention to objects. Curr. Dir. Psychol. Sci. 4, 201–206 (1995)

    Article  Google Scholar 

  17. Driver, J. & Baylis, G. C. Edge-assignment and figure-ground segmentation in short-term visual matching. Cognit. Psychol. 31, 248–306 (1996)

    Article  CAS  Google Scholar 

  18. Baylis, G. C. & Cale, E. The figure has a shape, but the ground does not: Evidence from covert testing of shape recognition. J. Exp. Psychol. Hum. Percept. Perform. 27, 633–643 (2001).

    Article  CAS  Google Scholar 

  19. Hoffman, D. D. & Richards, W. A. Parts of recognition. Cognition 18, 65–96 (1984).

    Article  CAS  Google Scholar 

  20. Baylis, G. C. & Driver, J. Obligatory edge-assignment in vision: the role of figure and part segmentation in symmetry detection. J. Exp. Psychol. Hum. Percept. Perform. 6, 1323–1342 (1995).

    Article  Google Scholar 

  21. Selzer, B. & Pandya, D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978)

    Article  Google Scholar 

  22. Pinker, S. Visual cognition: an introduction. Cognition 18, 1–64 (1984).

    Article  CAS  Google Scholar 

  23. Rolls, E. T. & Baylis, G. C. Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Exp. Brain. Res. 65, 38–48 (1986).

    Article  CAS  Google Scholar 

  24. Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987).

    Article  Google Scholar 

  25. Nakayama, K., Shimojo, S. & Silverman, G. H. Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18, 55–68 (1989).

    Article  CAS  Google Scholar 

  26. Palmer, S. & Rock, I. Rethinking perceptual organisation: the role of uniform connectedness. Psychon. Bull. Rev. 1, 29–55 (1994).

    Article  CAS  Google Scholar 

  27. Peterson, M. A. Object recognition processes can and do operate before figure-ground organisation. Curr. Dir. Psychol. Sci. 3, 105–111 (1994).

    Article  Google Scholar 

  28. Robinson D. A. A method of measuring eye-movements using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 101, 131–145 (1963).

    Google Scholar 

  29. Baylis, G. C., Rolls, E. T. & Leonard, C. M. Selectivity between faces in the responses of a population of neurons in the cortex of the superior temporal sulcus of the monkey. Brain Res. 342, 91–102 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.C.B. was supported by grants from the National Institutes of Health (R29 NS27296) and the National Science Foundation (SBR 96-16555). J.D. was supported by the Biotechnology and Biological Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gordon C. Baylis or Jon Driver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baylis, G., Driver, J. Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal. Nat Neurosci 4, 937–942 (2001). https://doi.org/10.1038/nn0901-937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0901-937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing