Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How smell develops

Abstract

The mouse's sense of smell is built of 1000 input channels. Each of these consists of a population of olfactory sensory neurons that express the same odorant receptor gene and project their axons to the same targets (glomeruli) in the olfactory bulb. A neuron must choose to express a singular receptor gene from a repertoire of 1000 genes, and its axon must be wired to the corresponding glomerulus, from an array of 1800 glomeruli. Genetic experiments have shown that the expressed odorant receptor specifies axonal choice of the innervated glomerulus, but it is not the only determinant. The mechanisms of odorant receptor gene choice and axonal wiring are central to the functional organization of the mammalian olfactory system. Although principles have emerged, our understanding of these processes is still limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the olfactory system in mice.

Bob Crimi

Figure 2: OR genes.

Bob Crimi

Figure 3: Patterns of connectivity between olfactory epithelium and olfactory bulb.

Bob Crimi

Figure 4: Singular, monoallelic and mutually exclusive expression.

Bob Crimi

Similar content being viewed by others

References

  1. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).

    Article  CAS  Google Scholar 

  2. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  3. Mombaerts, P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 22, 487–509 (1999).

    Article  CAS  Google Scholar 

  4. Mombaerts, P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286, 707–711 (1999).

    Article  CAS  Google Scholar 

  5. Mombaerts, P. The human repertoire of odorant receptor genes and pseudogenes. Annu. Rev. Genomics Hum. Genet. 2, 493–510 (2001).

    Article  CAS  Google Scholar 

  6. Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The complete human olfactory subgenome. Genome Res. 11, 685–702 (2001).

    Article  CAS  Google Scholar 

  7. Zozulya, S., Echeverri, F. & Nguyen, T. The human olfactory receptor repertoire. Genome Biol. 2, 0018.1–0018.12 (2001).

    Article  Google Scholar 

  8. Xie, S. Y., Feinstein, P. & Mombaerts, P. Characterization of a cluster comprising 100 odorant receptor genes in mouse. Mamm. Genome 11, 1070–1078 (2000).

    Article  CAS  Google Scholar 

  9. Tsuboi, A. et al. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J. Neurosci. 19, 8409–8418 (1999).

    Article  CAS  Google Scholar 

  10. Bulger, M. et al. Conservation of sequence and structure flanking the mouse and human β-globin loci: the β-globin genes are embedded within an array of odorant receptor genes. Proc. Natl. Acad. Sci. USA 96, 5129–5134 (1999).

    Article  CAS  Google Scholar 

  11. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  Google Scholar 

  12. Rawson, N. E. et al. Expression of mRNAs encoding for two different olfactory receptors in a subset of olfactory receptor neurons. J. Neurochem. 75, 185–195 (2000).

    Article  CAS  Google Scholar 

  13. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  Google Scholar 

  14. Strotmann, J. et al. Local permutations in the glomerular array of the mouse olfactory bulb. J. Neurosci. 20, 6927–6938 (2000).

    Article  CAS  Google Scholar 

  15. Ishii, T. et al. Monoallelic expression of the odourant receptor gene and axonal projection of olfactory sensory neurons. Genes Cells 6, 71–78 (2001).

    Article  CAS  Google Scholar 

  16. Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993).

    Article  CAS  Google Scholar 

  17. Vassar, R., Ngai, J. & Axel, R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309–318 (1993).

    Article  CAS  Google Scholar 

  18. Strotmann, J., Konzelmann, S. & Breer, H. Laminar segregation of odorant receptor expression in the olfactory epithelium. Cell Tissue Res. 284, 347–354 (1996).

    Article  CAS  Google Scholar 

  19. Sullivan, S. L., Bohm, S., Ressler, K. J., Horowitz, L. F. & Buck, L. B. Target-independent pattern specification in the olfactory epithelium. Neuron 15, 779–789 (1995).

    Article  CAS  Google Scholar 

  20. Strotmann, J., Wanner, I., Helfrich, T. & Breer, H. Receptor expression in olfactory neurons during rat development: in situ hybridization studies. Eur. J. Neurosci. 7, 492–500 (1995).

    Article  CAS  Google Scholar 

  21. Buck, L. B. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544 (1996).

    Article  CAS  Google Scholar 

  22. Alenius, M. & Bohm, S. Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection. J. Biol. Chem. 272, 26083–26086 (1997).

    Article  CAS  Google Scholar 

  23. Yoshihara, Y. et al. OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J. Neurosci. 17, 5830–5842 (1997).

    Article  CAS  Google Scholar 

  24. Norlin, E. M. & Berghard, A. Spatially restricted expression of regulators of G-protein signaling in primary olfactory neurons. Mol. Cell. Neurosci. 17, 872–882 (2001).

    Article  CAS  Google Scholar 

  25. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    Article  CAS  Google Scholar 

  26. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  Google Scholar 

  27. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  Google Scholar 

  28. Mori, K., Nagao, H. & Yoshihara, Y. (1999). The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715.

    Article  CAS  Google Scholar 

  29. Nagao, H., Yoshihara, Y., Mitsui, S., Fujisawa, H. & Mori, K. Two mirror-image sensory maps with domain organization in the mouse main olfactory bulb. Neuroreport 11, 3023–3027 (2000).

    Article  CAS  Google Scholar 

  30. Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    Article  CAS  Google Scholar 

  31. Mombaerts, P. Targeting olfaction. Curr. Opin. Neurobiol. 6, 481–486 (1996).

    Article  CAS  Google Scholar 

  32. Qasba, P. & Reed, R. R. Tissue and zonal-specific expression of an olfactory receptor transgene. J. Neurosci. 18, 227–236 (1998).

    Article  CAS  Google Scholar 

  33. Ebrahimi, F. A., Edmondson, J., Rothstein, R. & Chess, A. YAC transgene-mediated olfactory receptor gene choice. Dev. Dyn. 217, 225–231 (2000).

    Article  CAS  Google Scholar 

  34. Ebrahimi, F. A. & Chess, A. Olfactory neurons are interdependent in maintaining axonal projections. Curr. Biol. 10, 219–222 (2000).

    Article  CAS  Google Scholar 

  35. Serizawa, S. et al. Mutually exclusive expression of odorant receptor transgenes. Nat. Neurosci. 3, 687–693 (2000).

    Article  CAS  Google Scholar 

  36. Reed, R. R. Regulating olfactory receptor expression: controlling globally, acting locally. Nat. Neurosci. 3, 638–639 (2000).

    Article  CAS  Google Scholar 

  37. Pyrski, M. et al. The OMP-lacZ transgene mimics the unusual expression pattern of OR-Z6, a new odorant receptor gene in mouse. J. Neurosci. 21, 4637–4348 (2001).

    Article  CAS  Google Scholar 

  38. Sosinsky, A., Glusman, G. & Lancet, D. The genomic structure of human olfactory receptor genes. Genomics 70, 49–61 (2000).

    Article  CAS  Google Scholar 

  39. Bulger, M. et al. Comparative structural and functional analysis of the olfactory receptor genes flanking the human and mouse β-globin gene clusters. Proc. Natl. Acad. Sci. USA 97, 14560–14565 (2000).

    Article  CAS  Google Scholar 

  40. Hoppe, R., Weimer, M., Beck, A., Breer, H. & Strotmann, J. Sequence analyses of the olfactory receptor gene cluster mOR37 on mouse chromosome 4. Genomics 66, 284–295 (2000).

    Article  CAS  Google Scholar 

  41. Lane, R. P. et al. Genomic analysis of orthologous mouse and human olfactory receptor loci. Proc. Natl. Acad. Sci. USA 98, 7390–7395 (2001).

    Article  CAS  Google Scholar 

  42. Borst, P. & Ulbert, S. Control of VSG gene expression sites. Mol. Biochem. Parasit. 114, 17–27 (2001).

    Article  CAS  Google Scholar 

  43. Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998).

    Article  CAS  Google Scholar 

  44. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    Article  CAS  Google Scholar 

  45. Pasterkamp, R. J., De Winter, F., Holtmaat, A. J. & Verhaagen, J. Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons. J. Neurosci. 18, 9962–9976 (1998).

    Article  CAS  Google Scholar 

  46. Schwarting, G. A. et al. Semaphorin 3A is required for guidance of olfactory axons. J. Neurosci. 20, 7691–7697 (2000).

    Article  CAS  Google Scholar 

  47. Treloar, H., Tomasiewicz, H., Magnuson, T. & Key, B. The central pathway of primary olfactory axons is abnormal in mice lacking the N-CAM-180 isoform. J. Neurobiol. 32, 643–658 (1997).

    Article  CAS  Google Scholar 

  48. Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in G(olf) are anosmic. Neuron 20, 69–81 (1998).

    Article  CAS  Google Scholar 

  49. Lin, D. M. et al. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked activity. Neuron 26, 69–80 (2000).

    Article  CAS  Google Scholar 

  50. Zheng, C., Feinstein, P., Bozza, T., Rodriguez, I. & Mombaerts, P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26, 81–91 (2000).

    Article  CAS  Google Scholar 

  51. Bulfone, A. et al. An olfactory sensory maps develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21, 1273–1282 (1998).

    Article  CAS  Google Scholar 

  52. Nef, S., Lush, M. E., Shipman, T. E. & Parada, L. F. Neurotrophins are not required for normal embryonic development of olfactory neurons. Dev. Biol. 234, 80–92 (2001).

    Article  CAS  Google Scholar 

  53. Royal, S. J. & Key, B. Development of P2 olfactory glomeruli in P2-internal ribosome entry site-tau-lacZ transgenic mice. J. Neurosci. 19, 9856–9864 (1999).

    Article  CAS  Google Scholar 

  54. Potter, S. M., Zheng, C., Koos, D. S., Feinstein, P., Fraser, S. E. & Mombaerts, P. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. (in press).

  55. Bailey, M. S., Puche, A. C. & Shipley, M. T. Development of the olfactory bulb: evidence for glia–neuron interactions in glomerular formation. J. Comp. Neurol. 415, 423–448 (1999).

    Article  CAS  Google Scholar 

  56. Treloar, H. B., Purcell, A. L. & Greer, C. A. Glomerular formation in the developing rat olfactory bulb. J. Comp. Neurol. 413, 289–304 (1999).

    Article  CAS  Google Scholar 

  57. Zhao, H. & Reed, R. R. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104, 651–660 (2001).

    Article  CAS  Google Scholar 

  58. Schaefer, M. L., Finger, T. E. & Restrepo, D. Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb. J. Comp. Neurol. 436, 351–362 (2001).

    Article  CAS  Google Scholar 

  59. Bozza, T. C. & Mombaerts, P. Olfactory coding: revealing intrinsic representations of odors. Curr. Biol. 11, R687–R690 (2001).

    Article  CAS  Google Scholar 

  60. Costanzo, R. M. Rewiring the olfactory bulb: changes in odor maps following recovery from nerve transection. Chem. Senses 25, 199–205 (2000).

    Article  CAS  Google Scholar 

  61. Cummings, D. M., Emge, D. K., Small, S. L. & Margolis, F. L. Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J. Comp. Neurol. 421, 362–373 (2000).

    Article  CAS  Google Scholar 

  62. Gogos, J. A., Osborne, J., Nemes, A., Mendelsohn, M. & Axel, R. Genetic ablation and restoration of the olfactory topographic map. Cell 103, 609–620 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mombaerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mombaerts, P. How smell develops. Nat Neurosci 4 (Suppl 11), 1192–1198 (2001). https://doi.org/10.1038/nn751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing