Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas

Abstract

Calculating prodigies are individuals who are exceptional at quickly and accurately solving complex mental calculations. With positron emission tomography (PET), we investigated the neural bases of the cognitive abilities of an expert calculator and a group of non-experts, contrasting complex mental calculation to memory retrieval of arithmetic facts. We demonstrated that calculation expertise was not due to increased activity of processes that exist in non-experts; rather, the expert and the non-experts used different brain areas for calculation. We found that the expert could switch between short-term effort-requiring storage strategies and highly efficient episodic memory encoding and retrieval, a process that was sustained by right prefrontal and medial temporal areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of the two kinds of mental calculation tasks done during PET, and the type of resolution used by R. Gamm.
Figure 2: Brain areas activated during complex mental calculation either by both R. Gamm and the group of six non-expert calculators (green) or specifically by R. Gamm (red).

Similar content being viewed by others

References

  1. Ericsson, K. A. & Kintsch, W. Long-term working memory. Psychol. Rev. 102, 211–245 (1995).

    Article  CAS  Google Scholar 

  2. Ericsson, K. A., Krampe, R. T. & Tesh-Romer, C. The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406 (1993).

    Article  Google Scholar 

  3. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  Google Scholar 

  4. Grafton, S. T., Hazeltine, E. & Ivry, R. Functional mapping of sequence learning in normal humans. J. Cogn. Neurosci. 7, 497–510 (1995).

    Article  CAS  Google Scholar 

  5. Poldrack, R. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. The neural basis of visual skill learning: an fMRI study of mirror reading, Cereb. Cortex 8, 1–10 (1998).

    Article  CAS  Google Scholar 

  6. Smith, S. B. The Great Mental Calculators (Columbia Univ. Press, New York, 1983).

    Google Scholar 

  7. Ashcraft, M. H. Cognitive arithmetic: a review of data and theory. Cognition 44, 75–106 (1992).

    Article  CAS  Google Scholar 

  8. Campbell, J. I. D. Mechanisms of simple addition and multiplication: a modified network-interference theory and simulation. Math. Cogn. 1, 121–164 (1995).

    Google Scholar 

  9. Baddeley, A. D. Working Memory (Clarendon, Oxford, 1986).

    Google Scholar 

  10. Pesenti, M., Seron, X., Samson, D. & Duroux, B. Basic and exceptional calculation abilities in a calculating prodigy: a case study. Math. Cogn. 5, 97–148 (1999).

    Article  Google Scholar 

  11. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    Article  CAS  Google Scholar 

  12. Kosslyn, S. M. et al. Visual mental imagery activates topographically organized visual cortex: PET investigations. J. Cogn. Neurosci. 5, 263–287 (1993).

    Article  CAS  Google Scholar 

  13. Mellet, E., Petit, L., Mazoyer, B., Denis, M. & Tzourio, N. Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage 8, 129–139 (1998).

    Article  CAS  Google Scholar 

  14. Dehaene, S. et al. Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia 34, 1097–1106 (1996).

    Article  CAS  Google Scholar 

  15. Pesenti, M., Thioux, M., Seron, X. & De Volder, A. Neuroanatomical substrates of Arabic number processing, numerical comparison and simple addition: a PET study. J. Cogn. Neurosci. 12, 461–479 (2000).

    Article  CAS  Google Scholar 

  16. Dehaene, S., Dehaene-Lambertz, G. & Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 21, 355–361 (1998).

    Article  CAS  Google Scholar 

  17. Butterworth, B. A head for figures. Science 284, 928–929 (1999).

    Article  CAS  Google Scholar 

  18. Simon, T. J. The foundations of numerical thinking in a brain without numbers. Trends Cogn. Sci. 3, 363–364 (1999).

    Article  CAS  Google Scholar 

  19. Fuson, K. C. Children's Counting and the Concepts of Number (Springer, New York, 1988).

    Book  Google Scholar 

  20. Fayol, M., Barrouillet, P. & Marinthe, C. Predicting arithmetical achievement from neuropsychological performance: a longitudinal study. Cognition 68, 63–70 (1998).

    Article  Google Scholar 

  21. Butterworth, B. The Mathematical Brain (Macmillan, London, 1999).

    Google Scholar 

  22. Gerstmann, J. Zur Symptomatologie der Hirnläsionen im Übergangsgebiet der unteren Parietal-und mittleren Occipitalwindung. Nervenarzt 3, 691–695 (1930).

    Google Scholar 

  23. Grafton, S. T., Fadiga, L., Arbib, M. A. & Rizzolatti, G. Premotor cortex activation during observation and naming of familiar tools. Neuroimage 6, 231–236 (1997).

    Article  CAS  Google Scholar 

  24. Heun, R. et al. Functional MRI of cerebral activation during encoding and retrieval of words. Hum. Brain Mapp. 8, 157–169 (1999).

    Article  CAS  Google Scholar 

  25. Krause, B. J. et al. Episodic retrieval activates the precuneus irrespective of the imagery content of word pair associates: a PET study. Brain 122, 255–263 (1999).

    Article  Google Scholar 

  26. Wagner, A. D., Desmond, J. E. & Gabrieli, J. D. E. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain 121, 1985–2002 (1998).

    Article  Google Scholar 

  27. Cabeza, R. et al. Functional neuroanatomy of recall and recognition: a PET study of episodic memory. J. Cogn. Neurosci. 9, 254–265 (1997).

    Article  CAS  Google Scholar 

  28. Carter, C. S. et al. Parsing executive processes: strategic versus evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 97, 1944–1948 (2000).

    Article  CAS  Google Scholar 

  29. MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  Google Scholar 

  30. Gehring, W. J. & Knight, R. T. Prefrontal–cingulate interactions in action monitoring. Nat. Neurosci. 3, 516–520 (2000).

    Article  CAS  Google Scholar 

  31. Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    Article  CAS  Google Scholar 

  32. Young, B. J., Otto, T., Fox, G. D. & Eichenbaum, H. Memory representation within the parahippocampal region. J. Neurosci. 17, 5183–5195 (1997).

    Article  CAS  Google Scholar 

  33. Zago, L. et al. Neural correlates of simple and complex mental calculation. Neuroimage (in press).

  34. LeFevre, J. et al. Multiple route to solution of single-digit multiplication problems. J. Exp. Psychol. Gen. 125, 384–306 (1996).

    Article  Google Scholar 

  35. Faust, M. W., Ashcraft, M. H. & Fleck, D. E. Mathematics anxiety effects in simple and complex addition. Math. Cogn. 2, 25–62 (1996).

    Article  Google Scholar 

  36. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R. & Maziotta, J. C. Automated image registration: I. General methods and intrasubject validation. J. Comput. Assist. Tomogr. 22, 139–152 (1997).

    Article  Google Scholar 

  37. Price, C. J. & Friston, K. J. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5, 261–270 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Rüdiger Gamm for his participation in this study. This work has been supported in part by a grant, 'GIS Science de la Cognition,' and the PAI/IUAP Program from the Belgian Government. M.P. is a Research Associate of the National Fund for Scientific Research (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Tzourio-Mazoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesenti, M., Zago, L., Crivello, F. et al. Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nat Neurosci 4, 103–107 (2001). https://doi.org/10.1038/82831

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing