Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational approaches to sensorimotor transformations

Abstract

Behaviors such as sensing an object and then moving your eyes or your hand toward it require that sensory information be used to help generate a motor command, a process known as a sensorimotor transformation. Here we review models of sensorimotor transformations that use a flexible intermediate representation that relies on basis functions. The use of basis functions as an intermediate is borrowed from the theory of nonlinear function approximation. We show that this approach provides a unifying insight into the neural basis of three crucial aspects of sensorimotor transformations, namely, computation, learning and short-term memory. This mathematical formalism is consistent with the responses of cortical neurons and provides a fresh perspective on the issue of frames of reference in spatial representations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear and nonlinear functions.
Figure 2: Basis function units.
Figure 3: Learning sensorimotor transformations in neural networks.
Figure 4: One-to-many sensorimotor transformations.
Figure 5: Short-term memory networks for sensorimotor transformations.

Similar content being viewed by others

References

  1. Tresch, M., Saltiel, P. & Bizzi, E. The construction of movement by the spinal cord. Nat. Neurosci. 2, 162–167 (1999).

    Article  CAS  Google Scholar 

  2. Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci. 3, 391– 398 (2000).

    Article  CAS  Google Scholar 

  3. Poggio, T. A theory of how the brain might work. Cold Spring Harbor Symp. Quant. Biol. 55, 899–910 (1990).

    Article  CAS  Google Scholar 

  4. Pouget, A. & Sejnowski, T. A neural model of the cortical representation of egocentric distance. Cereb. Cortex 4, 314–329 (1994).

    Article  CAS  Google Scholar 

  5. Pouget, A. & Sejnowski, T. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).

    Article  CAS  Google Scholar 

  6. Groh, J. & Sparks, D. Two models for transforming auditory signals from head-centered to eye-centered coordinates. Biol. Cybern. 67, 291–302 ( 1992).

    Article  CAS  Google Scholar 

  7. Burnod, Y. et al. Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations. J. Neurosci. 12, 1435–1453 (1992).

    Article  CAS  Google Scholar 

  8. Salinas, E. & Abbot, L. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).

    Article  CAS  Google Scholar 

  9. Zipser, D. & Andersen, R. A back-propagation programmed network that stimulates reponse properties of a subset of posterior parietal neurons . Nature 331, 679–684 (1988).

    Article  CAS  Google Scholar 

  10. Andersen, R., Essick, G. & Siegel, R. Encoding of spatial location by posterior parietal neurons . Science 230, 456–458 (1985).

    Article  CAS  Google Scholar 

  11. Trotter, Y., Celebrini, S., Stricanne, B., Thorpe, S. & Imbert, M. Neural processing of stereopsis as a function of viewing distance in primate visual area V1. J. Neurophysiol. 76, 2872–2885 ( 1997).

    Article  Google Scholar 

  12. Trotter, Y. & Celebrini, S. Gaze direction controls response gain in primary visual-cortex neurons. Nature 398, 239–242 (1999).

    Article  CAS  Google Scholar 

  13. Galletti, C. & Battaglini, P. Gaze-dependent visual neurons in area {V3a} of monkey prestriate cortex. J. Neurosci. 9, 1112–1125 (1989).

    Article  CAS  Google Scholar 

  14. Bremmer, F., Ilg, U., Thiele, A., Distler, C. & Hoffman, K. Eye position effects in monkey cortex. I: Visual and pursuit-related activity in extrastriate areas MT and MST. J. Neurophysiol. 77, 944–961 ( 1997).

    Article  CAS  Google Scholar 

  15. Cumming, B. & Parker, A. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J. Neurosci. 19, 5602–5618 (1999).

    Article  CAS  Google Scholar 

  16. Boussaoud, D., Barth, T. & Wise, S. Effects of gaze on apparent visual responses of frontal cortex neurons. Exp. Brain Res. 93, 423–434 (1993).

    Article  CAS  Google Scholar 

  17. Squatrito, S. & Maioli, M. Gaze field properties of eye position neurones in areas MST and 7a of macaque monkey. Vis. Neurosci. 13, 385–398 ( 1996).

    Article  CAS  Google Scholar 

  18. Vallar, G. Spatial hemineglect in humans. Trends Cogn. Sci. 2, 87–97 (1998).

    Article  CAS  Google Scholar 

  19. Pouget, A., Deneve, S. & Sejnowski, T. Frames of reference in hemineglect: a computational approach. Prog. Brain Res. 121, 81– 97 (1999).

    Article  CAS  Google Scholar 

  20. Piaget, J. The Origins of Intelligence in Children (The Norton Library, New York, 1952).

    Book  Google Scholar 

  21. Kuperstein, M. Neural model of adaptative hand-eye coordination for single postures. Science 239, 1308–1311 ( 1988).

    Article  CAS  Google Scholar 

  22. Widrow, B. & Hoff, M. E. in Conference proceedings of WESCON , 96–104 (1960).

    Google Scholar 

  23. Moody, J. & Darken, C. Fast learning in networks of locally-tuned processing units. Neural Comput. 1, 281– 294 (1989).

    Article  Google Scholar 

  24. Hinton, G. & Brown, A. in Neural Information Processing Systems vol. 12, 122–128 (MIT Press, Cambridge Massachusetts, 2000).

    Google Scholar 

  25. Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res. 37, 3311–3325 ( 1997).

    Article  CAS  Google Scholar 

  26. Jordan, M. & Rumelhart, D. Forward models: supervised learning with a distal teacher. Cognit. Sci. 16, 307–354 (1990).

    Article  Google Scholar 

  27. Rumelhart, D., Hinton, G. & Williams, R. in Parallel Distributed Processing (eds. Rumelhart, D., McClelland, J. & Group, P. R.) 318–362 (MIT Press, Cambridge, Massachusetts, 1986).

    Google Scholar 

  28. Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat. Neurosci. 2, 563–567 (1999).

    Article  CAS  Google Scholar 

  29. Wolpert, D. M., Goodbody, S. J. & Husain, M. Maintaining internal representations: the role of the human superior parietal lobe. Nat. Neurosci. 1, 529–533 (1998).

    Article  CAS  Google Scholar 

  30. Amit, D. The hebbian paradigm reintegrated — local reverberations as internal representations. Behav. Brain Sci. 18, 617 –626 (1995).

    Article  Google Scholar 

  31. Fuster, J. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  32. Goldberg, M. & Bruce, C. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J. Neurophysiol. 64, 489–508 (1990).

    Article  CAS  Google Scholar 

  33. Gnadt, J. & Mays, L. Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space. J. Neurophysiol. 73, 280–297 (1995).

    Article  CAS  Google Scholar 

  34. Funahashi, S., Bruce, C. & Goldman-Rakic, P. Dorsolateral prefrontal lesions and oculomotor delayed response performance: evidence for mnemonic “scotomas”. J. Neurosci. 13, 1479–1497 (1993).

    Article  CAS  Google Scholar 

  35. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article  CAS  Google Scholar 

  36. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  37. Salinas, E. & Abbott, L. F. A model of multiplicative neural responses in parietal cortex. Proc. Natl. Acad. Sci. USA 93, 11956–11961 (1996).

    Article  CAS  Google Scholar 

  38. Deneve, S., Latham, P. & Pouget, A. Reading population codes: A neural implementation of ideal observers. Nat. Neurosci. 2, 740– 745 (1999).

    Article  CAS  Google Scholar 

  39. Walker, M., Fitzgibbon, E. & Goldberg, M. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73, 1988–2003 ( 1995).

    Article  CAS  Google Scholar 

  40. Mazzoni, P., Bracewell, R., Barash, S. & Andersen, R. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J. Neurophysiol. 76, 1439–1456 (1996).

    Article  CAS  Google Scholar 

  41. Graziano, M., Hu, X. & Gross, C. Coding the locations of objects in the dark. Science 277, 239–241 (1997).

    Article  CAS  Google Scholar 

  42. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  43. Droulez, J. & Berthoz, A. A neural model of sensoritopic maps with predictive short-term memory properties. Proc. Natl. Acad. Sci. USA 88, 9653–9657 ( 1991).

    Article  CAS  Google Scholar 

  44. Dominey, P. & Arbib, M. A cortico-subcortical model for the generation of spatially accurate sequential saccades. Cereb. Cortex 2, 153–175 ( 1992).

    Article  CAS  Google Scholar 

  45. Seung, H. How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93, 13339–13344 ( 1996).

    Article  CAS  Google Scholar 

  46. Snyder, L., Batista, A. & Andersen, R. Coding of intention in the posterior parietal cortex . Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  47. Snyder, L., Grieve, K., Brotchie, P. & Andersen, R. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.P. is supported by a Young Investigator Award from ONR and fellowships from the Sloan Foundation and the McDonnell-Pew foundation. L.H.S. is supported by fellowships from the Sloan and Klingenstein foundations, and by NEI. We thank Daphne Bavelier and Suliann Ben Hamed for comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Pouget.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouget, A., Snyder, L. Computational approaches to sensorimotor transformations. Nat Neurosci 3 (Suppl 11), 1192–1198 (2000). https://doi.org/10.1038/81469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing