Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational psychiatry as a bridge from neuroscience to clinical applications

Abstract

Translating advances in neuroscience into benefits for patients with mental illness presents enormous challenges because it involves both the most complex organ, the brain, and its interaction with a similarly complex environment. Dealing with such complexities demands powerful techniques. Computational psychiatry combines multiple levels and types of computation with multiple types of data in an effort to improve understanding, prediction and treatment of mental illness. Computational psychiatry, broadly defined, encompasses two complementary approaches: data driven and theory driven. Data-driven approaches apply machine-learning methods to high-dimensional data to improve classification of disease, predict treatment outcomes or improve treatment selection. These approaches are generally agnostic as to the underlying mechanisms. Theory-driven approaches, in contrast, use models that instantiate prior knowledge of, or explicit hypotheses about, such mechanisms, possibly at multiple levels of analysis and abstraction. We review recent advances in both approaches, with an emphasis on clinical applications, and highlight the utility of combining them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The blessing and curse of dimensionality.
Figure 2: Exploiting and coping with high dimensionality in psychiatric data sets.
Figure 3: Using EEG measures for treatment selection in depression improves treatment response.
Figure 4: Networks of symptoms.
Figure 5: Theory-driven biophysical and RL approaches.
Figure 6: Mechanistic models yield parameters that can be used as features to improve ML performance.

Similar content being viewed by others

References

  1. Kapur, S., Phillips, A.G. & Insel, T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174–1179 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Maia, T.V. & Cano-Colino, M. The role of serotonin in orbitofrontal function and obsessive-compulsive disorder. Clin. Psychol. Sci. 3, 460–482 (2015).

    Article  Google Scholar 

  3. Huys, Q.J.M., Moutoussis, M. & Williams, J. Are computational models of any use to psychiatry? Neural Netw. 24, 544–551 (2011).

    Article  PubMed  Google Scholar 

  4. Stephan, K.E. et al. Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 3, 77–83 (2015).

    Article  PubMed  Google Scholar 

  5. Caspi, A. & Moffitt, T.E. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat. Rev. Neurosci. 7, 583–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Williams, L.M. et al. International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: rationale and protocol. Trials 12, 4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mennes, M., Biswal, B.B., Castellanos, F.X. & Milham, M.P. Making data sharing work: the FCP/INDI experience. Neuroimage 82, 683–691 (2013).

    Article  PubMed  Google Scholar 

  8. Maia, T.V. Introduction to the series on computational psychiatry. Clin. Psychol. Sci. 3, 374–377 (2015).

    Article  Google Scholar 

  9. Maia, T.V. & Frank, M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montague, P.R., Dolan, R.J., Friston, K.J. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    Article  PubMed  Google Scholar 

  11. Wang, X.J. & Krystal, J.H. Computational psychiatry. Neuron 84, 638–654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiecki, T.V., Poland, J. & Frank, M.J. Model-based cognitive neuroscience approaches to computational psychiatry clustering and classification. Clin. Psychol. Sci. 3, 378–399 (2015).

    Article  Google Scholar 

  13. Maia, T.V. & McClelland, J.L. A neurocomputational approach to obsessive-compulsive disorder. Trends Cogn. Sci. 16, 14–15 (2012).

    Article  PubMed  Google Scholar 

  14. Stephan, K.E. & Mathys, C. Computational approaches to psychiatry. Curr. Opin. Neurobiol. 25, 85–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Huys, Q.J.M., Daw, N.D. & Dayan, P. Depression: a decision-theoretic analysis. Annu. Rev. Neurosci. 38, 1–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Stephan, K.E., Iglesias, S., Heinzle, J. & Diaconescu, A.O. Translational perspectives for computational neuroimaging. Neuron 87, 716–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5 R) (American Psychiatric Publishing, 2013).

  18. World Health Organization. International Classification of Diseases (World Health Organization Press, 1990).

  19. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  20. MacKay, D.J. Information Theory, Inference and Learning Algorithms (CUP, Cambridge, 2003).

  21. Lee, S.H. et al.; Cross-Disorder Group of the Psychiatric Genomics Consortium; International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Huys, Q.J.M., Pizzagalli, D.A., Bogdan, R. & Dayan, P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol. Mood Anxiety Disord. 3, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cunningham, J.P. & Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brodersen, K.H. et al. Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin. 4, 98–111 (2014).

    Article  PubMed  Google Scholar 

  25. Harlé, K.M. et al. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413–3426 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G. & Mechelli, A. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36, 1140–1152 (2012).

    Article  PubMed  Google Scholar 

  27. Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B. & Marquand, A.F. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57, 328–349 (2015).

    Article  PubMed  Google Scholar 

  28. Borsboom, D., Cramer, A.O.J., Schmittmann, V.D., Epskamp, S. & Waldorp, L.J. The small world of psychopathology. PLoS One 6, e27407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kessler, R.C. et al. Comorbidity of DSM-III-R major depressive disorder in the general population: results from the US National Comorbidity Survey. Br. J. Psychiatry Suppl. 30, 17–30 (1996).

    Article  Google Scholar 

  30. Fairburn, C.G. & Bohn, K. Eating disorder NOS (EDNOS): an example of the troublesome “not otherwise specified” (NOS) category in DSM-IV. Behav. Res. Ther. 43, 691–701 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kessler, R.C., Zhao, S., Blazer, D.G. & Swartz, M. Prevalence, correlates, and course of minor depression and major depression in the National Comorbidity Survey. J. Affect. Disord. 45, 19–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Freedman, R. et al. The initial field trials of DSM-5: new blooms and old thorns. Am. J. Psychiatry 170, 1–5 (2013).

    Article  PubMed  Google Scholar 

  33. Silva, R.F. et al. The tenth annual MLSP competition: schizophrenia classification challenge. IEEE Int. Workshop Mach. Learn. Signal Process. 1–6 (2014).

  34. Solin, A. & Sarkka, S. The tenth annual MLSP competition: first place. in IEEE Int. Workshop Mach. Learn. Signal Process. 1–6 (2014).

  35. Sabuncu, M.R. & Konukoglu, E. Alzheimer's Disease Neuroimaging Initiative. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics 13, 31–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hahn, T. et al. Integrating neurobiological markers of depression. Arch. Gen. Psychiatry 68, 361–368 (2011).

    Article  PubMed  Google Scholar 

  37. Hinton, G.E., Osindero, S. & Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006).

    Article  PubMed  Google Scholar 

  38. Peng, X., Lin, P., Zhang, T. & Wang, J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS One 8, e79476 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kim, J., Calhoun, V.D., Shim, E. & Lee, J.H. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124 Pt A, 127–146 2016).

    Article  PubMed  Google Scholar 

  40. Watanabe, T., Kessler, D., Scott, C., Angstadt, M. & Sripada, C. Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. Neuroimage 96, 183–202 (2014).

    Article  PubMed  Google Scholar 

  41. Costafreda, S.G. et al. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry 11, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pereira, F., Mitchell, T. & Botvinick, M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45 (suppl.) S199–S209 (2009).

    Article  PubMed  Google Scholar 

  43. Lubke, G.H. et al. Subtypes versus severity differences in attention-deficit/hyperactivity disorder in the Northern Finnish Birth Cohort. J. Am. Acad. Child Adolesc. Psychiatry 46, 1584–1593 (2007).

    Article  PubMed  Google Scholar 

  44. Caspi, A. et al. The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ruiz, F.J.R., Valera, I., Blanco, C. & Perez-Cruz, F. Bayesian nonparametric comorbidity analysis of psychiatric disorders. J. Mach. Learn. Res. 15, 1215–1247 (2014).

    Google Scholar 

  46. Hyman, S.E. The diagnosis of mental disorders: the problem of reification. Annu. Rev. Clin. Psychol. 6, 155–179 (2010).

    Article  PubMed  Google Scholar 

  47. Koutsouleris, N. et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch. Gen. Psychiatry 66, 700–712 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schmaal, L. et al. Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: A multivariate pattern recognition study. Biol. Psychiatry 78, 278–286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stringaris, A. et al.; IMAGEN Consortium. The brain's response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample. Am. J. Psychiatry 172, 1215–1223 (2015).

    Article  PubMed  Google Scholar 

  50. Whelan, R. et al.; IMAGEN Consortium. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512, 185–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garbusow, M. et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict. Biol. published online, doi:10.1111/adb.12243 (1 April 2015).

  52. Niculescu, A.B. et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol. Psychiatry 20, 1266–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rush, A.J. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163, 1905–1917 (2006).

    Article  PubMed  Google Scholar 

  54. Olbrich, S. & Arns, M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int. Rev. Psychiatry 25, 604–618 (2013).

    Article  PubMed  Google Scholar 

  55. Iosifescu, D.V. Electroencephalography-derived biomarkers of antidepressant response. Harv. Rev. Psychiatry 19, 144–154 (2011).

    Article  PubMed  Google Scholar 

  56. Arns, M. et al. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome? Eur. Neuropsychopharmacol. 25, 1190–1200 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Arns, M. et al. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized ISPOT-D study. Clin. Neurophysiol. 127, 509–519 (2015).

    Article  PubMed  Google Scholar 

  58. Dinteren, Rv. et al. Utility of event-related potentials in predicting antidepressant treatment response: an iSPOT-D report. Eur. Neuropsychopharmacol. 25, 1981–1990 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Leuchter, A.F. et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage 1, 208–219 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Iosifescu, D.V. et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur. Neuropsychopharmacol. 19, 772–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Khodayari-Rostamabad, A., Reilly, J.P., Hasey, G.M., de Bruin, H. & Maccrimmon, D.J. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin. Neurophysiol. 124, 1975–1985 (2013).

    Article  PubMed  Google Scholar 

  62. Chekroud, A. et al. Cross-trial prediction of treatment outcome in depression. Lancet Psychiatry published online, doi:10.1016/S2215-0366(15)00471-X (20 January 2016).

  63. Gordon, E., Rush, A.J., Palmer, D.M., Braund, T.A. & Rekshan, W. Toward an online cognitive and emotional battery to predict treatment remission in depression. Neuropsychiatr. Dis. Treat. 11, 517–531 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Etkin, A. et al. A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40, 1332–1342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Korgaonkar, M.S. et al. Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine 2, 37–45 (2015).

    Article  PubMed  Google Scholar 

  66. Rifkin, R. & Klautau, A. In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004).

    Google Scholar 

  67. DeRubeis, R.J. et al. The Personalized Advantage Index: translating research on prediction into individualized treatment recommendations. A demonstration. PLoS One 9, e83875 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Anderson, I. & Pilling, S. Depression: the Treatment and Management of Depression in Adults (Updated Edition) (The British Psychological Society and The Royal College of Psychiatrists, 2010).

  69. Williams, L.M. et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology 40, 2398–2408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McGrath, C.L. et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70, 821–829 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. DeBattista, C. et al. The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. J. Psychiatr. Res. 45, 64–75 (2011).

    Article  PubMed  Google Scholar 

  72. Candy, M., Jones, L., Williams, R., Tookman, A. & King, M. Psychostimulants for depression. Cochrane Database Syst. Rev. (2): CD006722 (2008).

  73. Cuthbert, B.N. & Insel, T.R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cramer, A.O.J., Waldorp, L.J., van der Maas, H.L.J. & Borsboom, D. Comorbidity: a network perspective. Behav. Brain Sci. 33, 137–150, discussion 150–193 (2010).

    Article  PubMed  Google Scholar 

  75. Iacoviello, B.M., Alloy, L.B., Abramson, L.Y. & Choi, J.Y. The early course of depression: a longitudinal investigation of prodromal symptoms and their relation to the symptomatic course of depressive episodes. J. Abnorm. Psychol. 119, 459–467 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huys, Q.J.M. & Dayan, P. A Bayesian formulation of behavioral control. Cognition 113, 314–328 (2009).

    Article  PubMed  Google Scholar 

  77. Telford, C., McCarthy-Jones, S., Corcoran, R. & Rowse, G. Experience sampling methodology studies of depression: the state of the art. Psychol. Med. 42, 1119–1129 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Bringmann, L.F. et al. A network approach to psychopathology: new insights into clinical longitudinal data. PLoS One 8, e60188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bringmann, L.F., Lemmens, L.H.J.M., Huibers, M.J.H., Borsboom, D. & Tuerlinckx, F. Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychol. Med. 45, 747–757 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Wigman, J.T.W. et al.; MERGE. Exploring the underlying structure of mental disorders: cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychol. Med. 45, 2375–2387 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. van de Leemput, I.A. et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl. Acad. Sci. USA 111, 87–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Segal, Z.V. et al. Antidepressant monotherapy vs sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression. Arch. Gen. Psychiatry 67, 1256–1264 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dunlop, B.W., Holland, P., Bao, W., Ninan, P.T. & Keller, M.B. Recovery and subsequent recurrence in patients with recurrent major depressive disorder. J. Psychiatr. Res. 46, 708–715 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Marr, D. Vision (Freeman, New York, 1982).

  85. Guitart-Masip, M. et al. Go and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage 62, 154–166 (2012).

    Article  PubMed  Google Scholar 

  86. Huys, Q.J.M., Guitart-Masip, M., Dolan, R.J. & Dayan, P. Decision-theoretic psychiatry. Clin. Psychol. Sci. 3, 400–421 (2015).

    Article  Google Scholar 

  87. Frank, M.J. Linking across levels of computation in model-based cognitive neuroscience. in An Introduction to Model-Based Cognitive Neuroscience (eds. B. Forstmann & E. Wagenmakers) 163–181 (Springer, New York, 2015).

  88. Collins, A.G.E. & Frank, M.J. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337–366 (2014).

    Article  PubMed  Google Scholar 

  89. Lisman, J.E. et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31, 234–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Murray, J.D. et al. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb. Cortex 24, 859–872 (2014).

    Article  PubMed  Google Scholar 

  91. Krystal, J.H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Anticevic, A. et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc. Natl. Acad. Sci. USA 109, 16720–16725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Frank, M.J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).

    Article  PubMed  Google Scholar 

  94. Gurney, K.N., Humphries, M.D. & Redgrave, P. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol. 13, e1002034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sutton, R.S. & Barto, A.G. Reinforcement Learning: an Introduction (MIT Press, 1998).

  97. Daw, N. Trial-by-trial data analysis using computational models. in Decision Making, Affect, and Learning: Attention and Performance XXIII (eds. M.R. Delgado, E.A. Phelps & T.W. Robbins) 1–23 (OUP, 2009).

  98. Maia, T.V. Reinforcement learning, conditioning and the brain: successes and challenges. Cogn. Affect. Behav. Neurosci. 9, 343–364 (2009).

    Article  PubMed  Google Scholar 

  99. Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huys, Q.J.M. et al. The specificity of pavlovian regulation is associated with recovery from depression. Psychol. Med. (in the press).

  101. Gold, J.M. et al. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129–138 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Roiser, J.P. et al. Do patients with schizophrenia exhibit aberrant salience? Psychol. Med. 39, 199–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage 89, 171–180 (2014).

    Article  PubMed  Google Scholar 

  104. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    Article  PubMed  Google Scholar 

  105. Daw, N.D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Dolan, R.J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Friedel, E. et al. Devaluation and sequential decisions: linking goal-directed and model-based behavior. Front. Hum. Neurosci. 8, 587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Horga, G. et al. Changes in corticostriatal connectivity during reinforcement learning in humans. Hum. Brain Mapp. 36, 793–803 (2015).

    Article  PubMed  Google Scholar 

  109. Nutt, D.J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P.R. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 16, 305–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Redish, A.D. Addiction as a computational process gone awry. Science 306, 1944–1947 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Panlilio, L.V., Thorndike, E.B. & Schindler, C.W. Blocking of conditioning to a cocaine-paired stimulus: testing the hypothesis that cocaine perpetually produces a signal of larger-than-expected reward. Pharmacol. Biochem. Behav. 86, 774–777 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nelson, A. & Killcross, S. Amphetamine exposure enhances habit formation. J. Neurosci. 26, 3805–3812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Flagel, S.B. et al. A selective role for dopamine in stimulus-reward learning. Nature 469, 53–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Lesaint, F., Sigaud, O., Flagel, S.B., Robinson, T.E. & Khamassi, M. Modelling individual differences in the form of Pavlovian conditioned approach responses: a dual learning systems approach with factored representations. PLoS Comput. Biol. 10, e1003466 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Huys, Q.J.M., Tobler, P.N., Hasler, G. & Flagel, S.B. The role of learning-related dopamine signals in addiction vulnerability. Prog. Brain Res. 211, 31–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Sjoerds, Z. et al. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl. Psychiatry 3, e337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345–352 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sebold, M. et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 70, 122–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Robbins, T.W., Gillan, C.M., Smith, D.G., de Wit, S. & Ersche, K.D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81–91 (2012).

    Article  PubMed  Google Scholar 

  120. Gillan, C.M. et al. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry 172, 284–293 (2015).

    Article  PubMed  Google Scholar 

  121. Wunderlich, K., Smittenaar, P. & Dolan, R.J. Dopamine enhances model-based over model-free choice behavior. Neuron 75, 418–424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Deserno, L. et al. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc. Natl. Acad. Sci. USA 112, 1595–1600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cushman, F. & Morris, A. Habitual control of goal selection in humans. Proc. Natl. Acad. Sci. USA 112, 13817–13822 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Collins, A.G.E. & Frank, M.J. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol. Rev. 120, 190–229 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Otto, A.R., Gershman, S.J., Markman, A.B. & Daw, N.D. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol. Sci. 24, 751–761 (2013).

    Article  PubMed  Google Scholar 

  127. Schad, D.J. et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front. Psychol. 5, 1450 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Otto, A.R., Raio, C.M., Chiang, A., Phelps, E.A. & Daw, N.D. Working-memory capacity protects model-based learning from stress. Proc. Natl. Acad. Sci. USA 110, 20941–20946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boureau, Y.L., Sokol-Hessner, P. & Daw, N.D. Deciding how to decide: self-control and meta-decision making. Trends Cogn. Sci. 19, 700–710 (2015).

    Article  PubMed  Google Scholar 

  130. Keramati, M., Dezfouli, A. & Piray, P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput. Biol. 7, e1002055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Etkin, A., Büchel, C. & Gross, J.J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 16, 693–700 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Huys, Q.J.M. et al. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huys, Q.J.M. et al. Interplay of approximate planning strategies. Proc. Natl. Acad. Sci. USA 112, 3098–3103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gershman, S.J., Blei, D.M. & Niv, Y. Context, learning and extinction. Psychol. Rev. 117, 197–209 (2010).

    Article  PubMed  Google Scholar 

  135. Gershman, S.J., Jones, C.E., Norman, K.A., Monfils, M.H. & Niv, Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front. Behav. Neurosci. 7, 164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Maia, T.V. Fear conditioning and social groups: statistics, not genetics. Cogn. Sci. 33, 1232–1251 (2009).

    Article  PubMed  Google Scholar 

  137. Browning, M., Behrens, T.E., Jocham, G., O'Reilly, J.X. & Bishop, S.J. Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat. Neurosci. 18, 590–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shenoy, P. & Yu, A.J. Rational decision-making in inhibitory control. Front. Hum. Neurosci. 5, 48 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Frank, M.J. et al. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning. J. Neurosci. 35, 485–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cavanagh, J.F. et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14, 1462–1467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wiecki, T.V., Antoniades, C.A., Stevenson, A., Kennard, C. & Borowsky, B. A computational cognitive biomarker for early-stage Huntington's disease. PLoS One (in the press).

  142. Whelan, R. & Garavan, H. When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol. Psychiatry 75, 746–748 (2014).

    Article  PubMed  Google Scholar 

  143. Lemm, S., Blankertz, B., Dickhaus, T. & Müller, K.R. Introduction to machine learning for brain imaging. Neuroimage 56, 387–399 (2011).

    Article  PubMed  Google Scholar 

  144. Mwangi, B., Tian, T.S. & Soares, J.C. A review of feature reduction techniques in neuroimaging. Neuroinformatics 12, 229–244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wig, G.S. et al. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations. Cereb. Cortex 24, 2036–2054 (2014).

    Article  PubMed  Google Scholar 

  146. Maroco, J. et al. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 4, 299 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. MacKay, D.J. Bayesian interpolation. Neural Comput. 4, 415–447 (1992).

    Article  Google Scholar 

  148. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Neuroimage 14, 1137–1145 (1995).

    Google Scholar 

Download references

Acknowledgements

Q.J.M.H. was supported by a project grant from the Swiss National Science Foundation (320030L_153449/1) and M.F. by NSF grant 1460604 and NIMH R01 MH080066-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin J M Huys.

Ethics declarations

Competing interests

M.F. receives consulting fees from Hoffman La Roche Pharmaceuticals for using computational psychiatry approaches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huys, Q., Maia, T. & Frank, M. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19, 404–413 (2016). https://doi.org/10.1038/nn.4238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing