Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release

Abstract

The relationship between transmitter release evoked by action potentials and spontaneous release has fascinated neuroscientists for half a century, and separate biological roles for spontaneous release are emerging. Nevertheless, separate functions for spontaneous and Ca2+-evoked release do not necessarily indicate different origins of these two manifestations of vesicular fusion. Here we review how Ca2+ regulates evoked and spontaneous release, emphasizing that Ca2+ can briefly increase vesicle fusion rates one-millionfold above spontaneous rates. This high dynamic range suggests that docked and readily releasable pool (RRP) vesicles might be protected against spontaneous release while also being immediately available for ultrafast Ca2+-evoked release. Molecular mechanisms for such release clamping of highly fusogenic RRP vesicles are increasingly investigated. Thus, we view spontaneous release as a consequence of the highly release-competent state of a standing pool of RRP vesicles, which is molecularly fine-tuned to control spontaneous release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ sensitivity of transmitter release over a wide range of [Ca2+]i measured at a large CNS synapse.
Figure 2: Molecular mechanisms of a high dynamic range of transmitter release.

Similar content being viewed by others

References

  1. Barrett, E.F. & Stevens, C.F. The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 227, 691–708 (1972).

    CAS  Google Scholar 

  2. Goda, Y. & Stevens, C.F. Two components of transmitter release at a central synapse. Proc. Natl. Acad. Sci. USA 91, 12942–12946 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Atluri, P.P. & Regehr, W.G. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Delaney, K.R. & Tank, D.W. A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J. Neurosci. 14, 5885–5902 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Otsu, Y. et al. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Korogod, N., Lou, X. & Schneggenburger, R. Presynaptic Ca2+-requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J. Neurosci. 25, 5127–5137 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Habets, R.L.P. & Borst, J.G.G. Post-tetanic potentiation in the rat calyx of Held synapse. J. Physiol. (Lond.) 564, 173–187 (2005).

    CAS  Google Scholar 

  8. Babai, N., Kochubey, O., Keller, D. & Schneggenburger, R. An alien divalent ion reveals a major role for Ca2+ buffering in controlling slow transmitter release. J. Neurosci. 34, 12622–12635 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Kaeser, P.S. & Regehr, W.G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333–363 (2014).

    CAS  PubMed  Google Scholar 

  10. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  11. McKinney, R.A., Capogna, M., Dürr, R., Gähwiler, B.H. & Thompson, S.M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    CAS  PubMed  Google Scholar 

  12. Sutton, M.A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    CAS  PubMed  Google Scholar 

  13. Sutton, M.A., Taylor, A.M., Ito, H.T., Pham, A. & Schuman, E.M. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55, 648–661 (2007).

    CAS  PubMed  Google Scholar 

  14. Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235–1237 (2007).

    CAS  PubMed  Google Scholar 

  15. Choi, B.J. et al. Miniature neurotransmission regulates Drosophila synaptic structural maturation. Neuron 82, 618–634 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sara, Y., Virmani, T., Deak, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    CAS  PubMed  Google Scholar 

  17. Fredj, N.B. & Burrone, J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci. 12, 751–758 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Groemer, T.W. & Klingauf, J. Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat. Neurosci. 10, 145–147 (2007).

    CAS  PubMed  Google Scholar 

  19. Hua, Y., Sinha, R., Martineau, M., Kahms, M. & Klingauf, J. A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat. Neurosci. 13, 1451–1453 (2010).

    CAS  PubMed  Google Scholar 

  20. Wilhelm, B.G., Groemer, T.W. & Rizzoli, S.O. The same synaptic vesicles drive active and spontaneous release. Nat. Neurosci. 13, 1454–1456 (2010).

    CAS  PubMed  Google Scholar 

  21. Kavalali, E.T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci. 16, 5–16 (2015).

    CAS  PubMed  Google Scholar 

  22. Elmqvist, D. & Quastel, D.M.J. A quantitative study of end-plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 505–529 (1965).

    CAS  Google Scholar 

  23. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    CAS  PubMed  Google Scholar 

  24. Schneggenburger, R., Meyer, A.C. & Neher, E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23, 399–409 (1999).

    CAS  PubMed  Google Scholar 

  25. Sørensen, J.B. Formation, stabilization and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch. 448, 347–362 (2004).

    PubMed  Google Scholar 

  26. Harris, K.M. & Sultan, P. Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the non-uniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34, 1387–1395 (1995).

    CAS  PubMed  Google Scholar 

  27. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu-Friedman, M.A., Harris, K.M. & Regehr, W.G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Taschenberger, H., Leao, R.M., Rowland, K.C., Spirou, G.A. & von Gersdorff, H. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36, 1127–1143 (2002).

    CAS  PubMed  Google Scholar 

  30. Han, Y., Kaeser, P.S., Südhof, T.C. & Schneggenburger, R. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304–316 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Watanabe, S. et al. Ultrafast endocytosis at mouse hippocampal synapses. Nature 504, 242–247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Imig, C. et al. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 84, 416–431 (2014).

    CAS  PubMed  Google Scholar 

  33. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    CAS  PubMed  Google Scholar 

  34. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    CAS  PubMed  Google Scholar 

  35. Borst, J.G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 489, 825–840 (1995).

    CAS  Google Scholar 

  36. Forsythe, I.D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.) 479, 381–387 (1994).

    Google Scholar 

  37. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    PubMed  PubMed Central  Google Scholar 

  38. Meyer, A.C., Neher, E. & Schneggenburger, R. Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis. J. Neurosci. 21, 7889–7900 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Borst, J.G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    CAS  PubMed  Google Scholar 

  40. Takahashi, T., Forsythe, I.D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. Presynaptic calcium current modulation by metabotropic glutamate receptor. Science 274, 594–597 (1996).

    CAS  PubMed  Google Scholar 

  41. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32, 1119–1131 (2001).

    CAS  PubMed  Google Scholar 

  42. Bollmann, J.H., Sakmann, B. & Borst, J. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    CAS  PubMed  Google Scholar 

  43. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    CAS  PubMed  Google Scholar 

  44. Kochubey, O., Lou, X. & Schneggenburger, R. Regulation of transmitter release by Ca2+ and synaptotagmin: insights from a large CNS synapse. Trends Neurosci. 34, 237–246 (2011).

    CAS  PubMed  Google Scholar 

  45. Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of Held synapse. J. Neurosci. 21, 462–476 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wölfel, M. & Schneggenburger, R. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J. Neurosci. 23, 7059–7068 (2003).

    PubMed  PubMed Central  Google Scholar 

  47. Dodge, F.A. & Rahamimoff, R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).

    CAS  Google Scholar 

  48. Wang, L.-Y., Neher, E. & Taschenberger, H. Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release. J. Neurosci. 28, 14450–14458 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kochubey, O., Han, Y. & Schneggenburger, R. Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held. J. Physiol. (Lond.) 587, 3009–3023 (2009).

    CAS  Google Scholar 

  50. Lou, X., Scheuss, V. & Schneggenburger, R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435, 497–501 (2005).

    CAS  PubMed  Google Scholar 

  51. Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kochubey, O. & Schneggenburger, R. Synaptotagmin increases the dynamic range of synapses by driving Ca2+-evoked release and by clamping a near-linear remaining Ca2+ sensor. Neuron 69, 736–748 (2011).

    CAS  PubMed  Google Scholar 

  53. Pang, Z.P. & Südhof, T.C. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Murthy, V.N. & Stevens, C.F. Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci. 2, 503–507 (1999).

    CAS  PubMed  Google Scholar 

  55. Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci. 28, 10151–10166 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Melom, J.E., Akbergenova, Y., Gavornik, J.P. & Littleton, J.T. Spontaneous and evoked release are independently regulated at individual active zones. J. Neurosci. 33, 17253–17263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Peled, E.S., Newman, Z.L. & Isacoff, E.Y. Evoked and spontaneous transmission favored by distinct sets of synapses. Curr. Biol. 24, 484–493 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burgalossi, A. et al. SNARE protein recycling by αSNAP and βSNAP supports synaptic vesicle priming. Neuron 68, 473–487 (2010).

    CAS  PubMed  Google Scholar 

  59. Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 102, 18664–18669 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Arancillo, M. et al. Titration of Syntaxin1 in mammalian synapses reveals multiple roles in vesicle docking, priming, and release probability. J. Neurosci. 33, 16698–16714 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Emptage, N.J., Reid, C.A. & Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29, 197–208 (2001).

    CAS  PubMed  Google Scholar 

  62. Llano, I. et al. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat. Neurosci. 3, 1256–1265 (2000).

    CAS  PubMed  Google Scholar 

  63. Ermolyuk, Y.S. et al. Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nat. Neurosci. 16, 1754–1763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vyleta, N.P. & Smith, S.M. Spontaneous glutamate release is independent of calcium influx and tonically activated by the calcium-sensing receptor. J. Neurosci. 31, 4593–4606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, C. et al. Coactivation of multiple tightly coupled calcium channels triggers spontaneous release of GABA. Nat. Neurosci. 15, 1195–1197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Goswami, S.P., Bucurenciu, I. & Jonas, P. Miniature IPSCs in hippocampal granule cells are triggered by voltage-gated Ca2+ channels via microdomain coupling. J. Neurosci. 32, 14294–14304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Helmchen, F., Borst, J.G.G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, J., Pang, Z.P., Shin, O.H. & Sudhof, T.C. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat. Neurosci. 12, 759–766 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Augustine, G.J., Adler, E.M. & Charlton, M.P. The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann. NY Acad. Sci. 635, 365–381 (1991).

    CAS  PubMed  Google Scholar 

  70. Meinrenken, C.J., Borst, J.G.G. & Sakmann, B. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Matveev, V., Bertram, R. & Sherman, A. Calcium cooperativity of exocytosis as a measure of Ca2+ channel domain overlap. Brain Res. 1398, 126–138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Deitcher, D.L. et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028–2039 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001).

    CAS  PubMed  Google Scholar 

  74. Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci. 5, 19–26 (2002).

    CAS  PubMed  Google Scholar 

  75. Bronk, P. et al. Differential effects of SNAP-25 deletion on Ca2+-dependent and Ca2+-independent neurotransmission. J. Neurophysiol. 98, 794–806 (2007).

    CAS  PubMed  Google Scholar 

  76. Sakaba, T., Stein, A., Jahn, R. & Neher, E. Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 309, 491–494 (2005).

    CAS  PubMed  Google Scholar 

  77. Zimmermann, J., Trimbuch, T. & Rosenmund, C. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. J. Neurophysiol. 112, 1559–1565 (2014).

    CAS  PubMed  Google Scholar 

  78. Elferink, L.A., Trimble, W.S. & Scheller, R.H. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem. 264, 11061–11064 (1989).

    CAS  PubMed  Google Scholar 

  79. Nystuen, A.M., Schwendinger, J.K., Sachs, A.J., Yang, A.W. & Haider, N.B. A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics 8, 1–10 (2007).

    CAS  PubMed  Google Scholar 

  80. Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121–134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bal, M. et al. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80, 934–946 (2013).

    CAS  PubMed  Google Scholar 

  82. Betz, W.J. & Bewick, G.S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    CAS  PubMed  Google Scholar 

  83. Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    CAS  PubMed  Google Scholar 

  84. Prange, O. & Murphy, T.H. Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J. Neurosci. 19, 6427–6438 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chung, C., Barylko, B., Leitz, J., Liu, X. & Kavalali, E.T. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J. Neurosci. 30, 1363–1376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wojcik, S.M. & Brose, N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55, 11–24 (2007).

    CAS  PubMed  Google Scholar 

  87. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Südhof, T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013).

    PubMed  Google Scholar 

  91. Shapira, R., Silberberg, S.D., Ginsburg, S. & Rahamimoff, R. Activation of protein kinase C augments evoked transmitter release. Nature 325, 58–60 (1987).

    CAS  PubMed  Google Scholar 

  92. Malenka, R.C., Madison, D.V. & Nicoll, R.A. Potentiation of synaptic transmission in the hippocampus by phorbol ester. Nature 321, 175–177 (1986).

    CAS  PubMed  Google Scholar 

  93. Rhee, J.-S. β phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by munc13s and not by PKCs. Cell 108, 121–133 (2002).

    CAS  PubMed  Google Scholar 

  94. Lou, X., Korogod, N., Brose, N. & Schneggenburger, R. Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C. J. Neurosci. 28, 8257–8267 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wierda, K.D., Toonen, R.F., de Wit, H., Brussaard, A.B. & Verhage, M. Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54, 275–290 (2007).

    CAS  PubMed  Google Scholar 

  96. Genc, O., Kochubey, O., Toonen, R.F., Verhage, M. & Schneggenburger, R. Munc18–1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. Elife 3, e01715 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Wu, X.S. & Wu, L.G. Protein kinase C increases the apparent affinity of the release machinery to Ca2+ by enhancing the release machinery downstream of the Ca2+ sensor. J. Neurosci. 21, 7928–7936 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Korogod, N., Lou, X. & Schneggenburger, R. Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC. Proc. Natl. Acad. Sci. USA 104, 15923–15928 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Basu, J., Betz, A., Brose, N. & Rosenmund, C. Munc13–1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J. Neurosci. 27, 1200–1210 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gerber, S.H. et al. Conformational switch of Syntaxin-1 controls synaptic vesicle fusion. Science 321, 1507–1510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Acuna, C. et al. Microsecond dissection of neurotransmitter release: SNARE-complex assembly dictates speed and Ca2+ sensitivity. Neuron 82, 1088–1100 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    CAS  PubMed  Google Scholar 

  104. Yoshihara, M. & Littleton, T. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36, 897–908 (2002).

    CAS  PubMed  Google Scholar 

  105. Nishiki, T. & Augustine, G. Synaptagmin I synchronizes transmitter release in mouse hippocampal neurons. J. Neurosci. 24, 6127–6132 (2004).

    PubMed  PubMed Central  Google Scholar 

  106. Maximov, A. & Südhof, T.C. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 48, 547–554 (2005).

    CAS  PubMed  Google Scholar 

  107. Pang, Z.P., Sun, J., Rizo, J., Maximov, A. & Südhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 25, 2039–2050 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, H., Dean, C., Arthur, C.P., Dong, M. & Chapman, E.R. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. J. Neurosci. 29, 7395–7403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, H., Chapman, E.R. & Dean, C. “Self” versus “non-self” connectivity dictates properties of synaptic transmission and plasticity. PLoS ONE 8, e62414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chang, C.L. et al. Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit. J. Neurosci. 34, 855–868 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Wierda, K.D. & Sorensen, J.B. Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1. J. Neurosci. 34, 2100–2110 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Xue, M. et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron 64, 367–380 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hobson, R.J., Liu, Q., Watanabe, S. & Jorgensen, E.M. Complexin maintains vesicles in the primed state in C. elegans. Curr. Biol. 21, 106–113 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Martin, J.A., Hu, Z., Fenz, K.M., Fernandez, J. & Dittman, J.S. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr. Biol. 21, 97–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Xue, M. et al. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17, 568–575 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Strenzke, N. et al. Complexin-I is required for high-fidelity transmission at the endbulb of Held auditory synapse. J. Neurosci. 29, 7991–8004 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Südhof, T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323, 516–521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, X., Kaeser-Woo, Y.J., Pang, Z.P., Xu, W. & Südhof, T.C. Complexin clamps asynchronous release by blocking a secondary Ca2+ sensor via its accessory alpha helix. Neuron 68, 907–920 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, X., Cao, P. & Südhof, T.C. Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes. Proc. Natl. Acad. Sci. USA 110, 20777–20782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Groffen, A.J. et al. Doc2b Is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327, 1614–1618 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yao, J., Gaffaney, J.D., Kwon, S.E. & Chapman, E.R. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 147, 666–677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pang, Z.P. et al. Doc2 supports spontaneous synaptic transmission by a Ca2+-independent mechanism. Neuron 70, 244–251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wen, H. et al. Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc. Natl. Acad. Sci. USA 107, 13906–13911 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bacaj, T. et al. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80, 947–959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chicka, M.C., Hui, E., Liu, H. & Chapman, E.R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. Struct. Mol. Biol. 15, 827–835 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mackler, J.M. & Reist, N.E. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions. J. Comp. Neurol. 436, 4–16 (2001).

    CAS  PubMed  Google Scholar 

  127. Rickman, C. et al. Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J. Biol. Chem. 279, 12574–12579 (2004).

    CAS  PubMed  Google Scholar 

  128. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    CAS  PubMed  Google Scholar 

  129. Yao, L. & Sakaba, T. cAMP modulates intracellular Ca2+ sensitivity of fast-releasing synaptic vesicles at the calyx of Held synapse. J. Neurophysiol. 104, 3250–3260 (2010).

    CAS  PubMed  Google Scholar 

  130. Otsu, Y. & Murphy, T.H. Miniature transmitter release: accident of nature or careful design? Sci. STKE 2003, pe54 (2003).

    PubMed  Google Scholar 

  131. Wasser, C.R. & Kavalali, E.T. Leaky synapses: regulation of spontaneous neurotransmission in central synapses. Neuroscience 158, 177–188 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Kochubey for discussions. The work in our laboratories is funded by grants from the Swiss National Science Foundation and Deutsche Forschungsgemeinschaft (DFG) to R.S. and from the DFG and European Research Council to C.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schneggenburger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneggenburger, R., Rosenmund, C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci 18, 935–941 (2015). https://doi.org/10.1038/nn.4044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing