Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding neural transcriptomes and epigenomes via high-throughput sequencing

Abstract

The mammalian brain is an evolutionary marvel in which engraving and re-engraving of cellular states enable complex information processing and lifelong maintenance. Understanding the mechanisms by which neurons alter and maintain their molecular signatures during information processing is a fundamental goal of neuroscience. Next-generation sequencing (NGS) technology is rapidly transforming the ability to probe the molecular basis of neuronal function. NGS can define not only the complete molecular signatures of cells by transcriptome analyses but also the cascade of events that induce or maintain such signatures by epigenetic analyses. Here we offer some general and practical information to demystify NGS technology and highlight its potential to the neuroscience field. We start with discussion of the complexity of the nervous system, then introduce various applications of NGS with practical considerations and describe basic principles underlying various NGS technologies. Finally, we discuss emerging NGS-related technologies for the neuroscience field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tackling the complexity of the mammalian brain.
Figure 2: Cellular properties that can be determined by today's NGS-powered assays.
Figure 3: Three widely used protocols for strand-specific RNA sequencing library preparation.
Figure 4: Bisulfite sequencing.
Figure 5: Overview of NGS technology using Illumina technology as an example.

Similar content being viewed by others

References

  1. Llinás, R.R. The contribution of Santiago Ramon y Cajal to functional neuroscience. Nat. Rev. Neurosci. 4, 77–80 (2003).

    PubMed  Google Scholar 

  2. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Maze, I. et al. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat. Neurosci. 17, 1476–1490 (2014).

    CAS  Google Scholar 

  4. Kim, T.K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saha, R.N. et al. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat. Neurosci. 14, 848–856 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo, J.U. et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 14, 1345–1351 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma, D.K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller, C.A. et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13, 664–666 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, C.A. & Sweatt, J.D. Covalent modification of DNA regulates memory formation. Neuron 53, 857–869 (2007).

    CAS  PubMed  Google Scholar 

  10. Fragou, D. et al. Effect of chronic heroin and cocaine administration on global DNA methylation in brain and liver. Toxicol. Lett. 218, 260–265 (2013).

    CAS  PubMed  Google Scholar 

  11. Vialou, V., Feng, J., Robison, A.J. & Nestler, E.J. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol. 53, 59–87 (2013).

    CAS  PubMed  Google Scholar 

  12. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  13. Guo, J.U. et al. Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain. Front. Biol. 9, 66–74 (2014).

    CAS  Google Scholar 

  14. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Guo, J.U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).

    CAS  PubMed  Google Scholar 

  16. Lee, E.J. et al. Identification of piRNAs in the central nervous system. RNA 17, 1090–1099 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Martí, E. et al. A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 38, 7219–7235 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Giraldez, A.J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    CAS  PubMed  Google Scholar 

  19. Smalheiser, N.R., Lugli, G., Thimmapuram, J., Cook, E.H. & Larson, J. Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. RNA 17, 166–181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bodian, D. A suggestive relationship of nerve cell RNA with specific synaptic sites. Proc. Natl. Acad. Sci. USA 53, 418–425 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, M.J. et al. Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in Down syndrome. BMC Med. Genomics 6, 58 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Shulha, H.P. et al. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol. 10, e1001427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonn, S. et al. Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat. Protoc. 7, 978–994 (2012).

    CAS  PubMed  Google Scholar 

  25. Deal, R.B. & Henikoff, S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18, 1030–1040 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Steiner, F.A., Talbert, P.B., Kasinathan, S., Deal, R.B. & Henikoff, S. Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res. 22, 766–777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Grindberg, R.V. et al. RNA-sequencing from single nuclei. Proc. Natl. Acad. Sci. USA 110, 19802–19807 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    CAS  PubMed  Google Scholar 

  35. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  37. Vogel, C. & Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, J.J., Bickel, P.J. & Biggin, M.D. System-wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Crick, F. Memory and molecular turnover. Nature 312, 101 (1984).

    CAS  PubMed  Google Scholar 

  40. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, C.J. & Irizarry, K. Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol. Psychiatry 54, 771–776 (2003).

    CAS  PubMed  Google Scholar 

  42. Kapranov, P. et al. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA. BMC Biol. 8, 149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F. & Mattick, J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA 105, 716–721 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen, T.B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  PubMed  Google Scholar 

  47. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    PubMed  Google Scholar 

  48. Morris, K.V., Santoso, S., Turner, A.M., Pastori, C. & Hawkins, P.G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 4, e1000258 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Levin, J.Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    CAS  PubMed  Google Scholar 

  55. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  58. Bonaguidi, M.A., Song, J., Ming, G.L. & Song, H. A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr. Opin. Neurobiol. 22, 754–761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8-Å resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  60. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Garcia, B.A., Pesavento, J.J., Mizzen, C.A. & Kelleher, N.L. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods 4, 487–489 (2007).

    CAS  PubMed  Google Scholar 

  62. Tweedie-Cullen, R.Y. et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS ONE 7, e36980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  64. Garcia-Ramirez, M., Rocchini, C. & Ausio, J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270, 17923–17928 (1995).

    CAS  PubMed  Google Scholar 

  65. Tse, C., Sera, T., Wolffe, A.P. & Hansen, J.C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L.H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    CAS  PubMed  Google Scholar 

  68. Guan, J.S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Consortium, E.P. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  71. Adli, M. & Bernstein, B.E. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat. Protoc. 6, 1656–1668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. He, Y.F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo, J.U., Su, Y., Zhong, C., Ming, G.L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014).

    CAS  PubMed  Google Scholar 

  78. Maiti, A. & Drohat, A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334–35338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zemach, A., McDaniel, I.E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    CAS  PubMed  Google Scholar 

  80. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  81. Feng, Y.Q. et al. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLoS Genet. 2, e65 (2006).

    PubMed  PubMed Central  Google Scholar 

  82. Raynal, N.J. et al. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. Cancer Res. 72, 1170–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Buschhausen, G., Wittig, B., Graessmann, M. & Graessmann, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Klose, R.J. & Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    CAS  PubMed  Google Scholar 

  85. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  PubMed  Google Scholar 

  86. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maunakea, A.K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ma, D.K. et al. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat. Neurosci. 13, 1338–1344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramsahoye, B.H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 97, 5237–5242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13, 1137–1143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Anier, K., Malinovskaja, K., Aonurm-Helm, A., Zharkovsky, A. & Kalda, A. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35, 2450–2461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lubin, F.D., Roth, T.L. & Sweatt, J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Day, J.J. & Sweatt, J.D. DNA methylation and memory formation. Nat. Neurosci. 13, 1319–1323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shapiro, R., Servis, R.E. & Welcher, M. Reactions of uracil and cytosine derivatives with sodium bisulfite. J. Am. Chem. Soc. 92, 422–424 (1970).

    CAS  Google Scholar 

  96. Hayatsu, H., Wataya, Y., Kai, K. & Iida, S. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9, 2858–2865 (1970).

    CAS  PubMed  Google Scholar 

  97. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shiragami, M., Kudo, I., Iida, S. & Hayatsu, H. Formation of diastereomers of 5,6-dihydrothymine-6-sulfonate by deamination of 5-methylcytosine with bisulfite. Chem. Pharm. Bull. (Tokyo) 23, 3027–3029 (1975).

    CAS  Google Scholar 

  99. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PloS ONE 5, e8888 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Song, C.X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu, M. et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat. Protoc. 7, 2159–2170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    CAS  PubMed  Google Scholar 

  104. Boyle, P. et al. Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol. 13, R92 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jabbari, K. & Bernardi, G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333, 143–149 (2004).

    CAS  PubMed  Google Scholar 

  106. Hon, G.C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    CAS  PubMed  Google Scholar 

  110. Ivanov, M. et al. In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res. 41, e72 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mathelier, A. et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147 (2014).

    CAS  PubMed  Google Scholar 

  113. Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214 (1997).

    CAS  PubMed  Google Scholar 

  114. Solomon, M.J., Larsen, P.L. & Varshavsky, A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947 (1988).

    CAS  PubMed  Google Scholar 

  115. Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    CAS  PubMed  Google Scholar 

  116. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  117. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  PubMed  Google Scholar 

  118. Zentner, G.E. & Henikoff, S. Surveying the epigenomic landscape, one base at a time. Genome Biol. 13, 250 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. Kasinathan, S., Orsi, G.A., Zentner, G.E., Ahmad, K. & Henikoff, S. High-resolution mapping of transcription factor binding sites on native chromatin. Nat. Methods 11, 203–209 (2014).

    CAS  PubMed  Google Scholar 

  120. Allan, J., Fraser, R.M., Owen-Hughes, T. & Keszenman-Pereyra, D. Micrococcal nuclease does not substantially bias nucleosome mapping. J. Mol. Biol. 417, 152–164 (2012).

    CAS  PubMed  Google Scholar 

  121. Rhee, H.S. & Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Galas, D.J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).

    CAS  PubMed  Google Scholar 

  124. Arvey, A., Agius, P., Noble, W.S. & Leslie, C. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Genome Res. 22, 1723–1734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. He, H.H. et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat. Methods 11, 73–78 (2014).

    CAS  PubMed  Google Scholar 

  126. Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Boyle, A.P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Spilianakis, C.G., Lalioti, M.D., Town, T., Lee, G.R. & Flavell, R.A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    CAS  PubMed  Google Scholar 

  131. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  133. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    CAS  PubMed  Google Scholar 

  134. Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wei, C.L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    CAS  PubMed  Google Scholar 

  137. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

  138. Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Statham, A.L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Brinkman, A.B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Blanco, L. & Salas, M. Characterization and purification of a phage phi 29-encoded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA 81, 5325–5329 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  PubMed  Google Scholar 

  144. Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fedurco, M., Romieu, A., Williams, S., Lawrence, I. & Turcatti, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 34, e22 (2006).

    PubMed  PubMed Central  Google Scholar 

  147. Loman, N.J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).

    CAS  PubMed  Google Scholar 

  148. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  PubMed  Google Scholar 

  149. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl. Acad. Sci. USA 110, 18910–18915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Christian for comments. The work in the authors' laboratories was supported by the US National Institutes of Health (H.S. and G.-I.M.), the Simons Foundation (SFARI 240011, H.S.) MSCRF (G.-I.M.) and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. J.S. was supported by a fellowship from Samsung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Ming, Gl. & Song, H. Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nat Neurosci 17, 1463–1475 (2014). https://doi.org/10.1038/nn.3814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3814

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research