Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Molecular architecture of the chick vestibular hair bundle

Abstract

Hair bundles of the inner ear have a specialized structure and protein composition that underlies their sensitivity to mechanical stimulation. Using mass spectrometry, we identified and quantified >1,100 proteins, present from a few to 400,000 copies per stereocilium, from purified chick bundles; 336 of these were significantly enriched in bundles. Bundle proteins that we detected have been shown to regulate cytoskeleton structure and dynamics, energy metabolism, phospholipid synthesis and cell signaling. Three-dimensional imaging using electron tomography allowed us to count the number of actin-actin cross-linkers and actin-membrane connectors; these values compared well to those obtained from mass spectrometry. Network analysis revealed several hub proteins, including RDX (radixin) and SLC9A3R2 (NHERF2), which interact with many bundle proteins and may perform functions essential for bundle structure and function. The quantitative mass spectrometry of bundle proteins reported here establishes a framework for future characterization of dynamic processes that shape bundle structure and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative analysis of chick hair-bundle proteins.
Figure 2: Protein composition of chick hair bundles.
Figure 3: Electron tomography of chick stereocilia.
Figure 4: Interaction network for hair-bundle proteins.
Figure 5: Identification of RDX and SLC9A3R2 in hair bundles.

Similar content being viewed by others

Accession codes

Accessions

Ensembl

GenBank/EMBL/DDBJ

References

  1. Schwander, M., Kachar, B. & Müller, U. The cell biology of hearing. J. Cell Biol. 190, 9–20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng, A.W., Salles, F.T., Pan, B. & Ricci, A.J. Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat. Commun. 2, 523 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Domon, B. & Aebersold, R. Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 28, 710–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Shin, J.B. et al. Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53, 371–386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, H., Williams, D.E., Shin, J.B., Brugger, B. & Gillespie, P.G. Large membrane domains in hair bundles specify spatially constricted radixin activation. J. Neurosci. 32, 4600–4609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donowitz, M. et al. NHERF family and NHE3 regulation. J. Physiol. (Lond.) 567, 3–11 (2005).

    Article  CAS  Google Scholar 

  7. Jones, S.M. & Jones, T.A. Ontogeny of vestibular compound action potentials in the domestic chicken. J. Assoc. Res. Otolaryngol. 1, 232–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Gillespie, P.G. & Hudspeth, A.J. High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins. J. Cell Biol. 112, 625–640 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, K. & Smith, C.A. Structure of the chicken's inner ear: SEM and TEM study. Am. J. Anat. 153, 251–271 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Burnham, J.A. & Stirling, C.E. Quantitative localization of Na-K pump sites in the frog sacculus. J. Neurocytol. 13, 617–638 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Kruger, R.P. et al. The supporting-cell antigen: a receptor-like protein tyrosine phosphatase expressed in the sensory epithelia of the avian inner ear. J. Neurosci. 19, 4815–4827 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schulte, B.A. & Adams, J.C. Immunohistochemical localization of vimentin in the gerbil inner ear. J. Histochem. Cytochem. 37, 1787–1797 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Grati, M. et al. Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network. J. Neurosci. 32, 14288–14293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  18. McKusick, V.A. Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eppig, J.T. et al. The Mouse Genome Database (MGD): from genes to mice–a community resource for mouse biology. Nucleic Acids Res. 33, D471–D475 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Spinelli, K.J. et al. Distinct energy metabolism of auditory and vestibular sensory epithelia revealed by quantitative mass spectrometry using MS2 intensity. Proc. Natl. Acad. Sci. USA 109, E268–E277 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steel, K.P. Genetic and environmental influences on hearing impairment. in Genes and Common Diseases: Genetics in Modern Medicine (eds. Wright, A.F. & Hastie, N.D.) 505–515 (Cambridge University Press, Cambridge, UK, 2007).

  22. Auer, M. et al. Three-dimensional architecture of hair-bundle linkages revealed by electron-microscopic tomography. J. Assoc. Res. Otolaryngol. 9, 215–224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tilney, L.G., Tilney, M.S. & DeRosier, D.J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell Biol. 8, 257–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Ma'ayan, A. Insights into the organization of biochemical regulatory networks using graph theory analyses. J. Biol. Chem. 284, 5451–5455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fruchterman, T.M.J. & Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991).

    Article  Google Scholar 

  26. Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Fehon, R.G., McClatchey, A.I. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11, 276–287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tonikian, R. et al. A specificity map for the PDZ domain family. PLoS Biol. 6, e239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shin, J.B. et al. The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. J. Neurosci. 30, 9683–9694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rzadzinska, A.K., Schneider, M.E., Davies, C., Riordan, G.P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chhabra, E.S. & Higgs, H.N. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Higgs, H.N., Blanchoin, L. & Pollard, T.D. Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, D.S. et al. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature 481, 520–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischer, R.S. & Fowler, V.M. Tropomodulins: life at the slow end. Trends Cell Biol. 13, 593–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Rehman, A.U. et al. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am. J. Hum. Genet. 86, 378–388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Furness, D.N., Mahendrasingam, S., Ohashi, M., Fettiplace, R. & Hackney, C.M. The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J. Neurosci. 28, 6342–6353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakaguchi, H. et al. Dynamic compartmentalization of protein tyrosine phosphatase receptor Q at the proximal end of stereocilia: implication of myosin VI-based transport. Cell Motil. Cytoskeleton 65, 528–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Kitajiri, S. et al. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 141, 786–798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maul, R.S. et al. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J. Cell Biol. 160, 399–407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin, H.L. & Janmey, P.A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Heo, W.D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gagnon, L.H. et al. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J. Neurosci. 26, 10188–10198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ponsioen, B. et al. Spatiotemporal regulation of chloride intracellular channel protein CLIC4 by RhoA. Mol. Biol. Cell 20, 4664–4672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shaw, R.J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403–419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garbett, D., LaLonde, D.P. & Bretscher, A. The scaffolding protein EBP50 regulates microvillar assembly in a phosphorylation-dependent manner. J. Cell Biol. 191, 397–413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garbett, D. & Bretscher, A. PDZ interactions regulate rapid turnover of the scaffolding protein EBP50 in microvilli. J. Cell Biol. 198, 195–203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walker, R.G., Hudspeth, A.J. & Gillespie, P.G. Calmodulin and calmodulin-binding proteins in hair bundles. Proc. Natl. Acad. Sci. USA 90, 2807–2811 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dumont, R.A. et al. Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J. Neurosci. 21, 5066–5078 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vizcaíno, J.A. et al. The Proteomics Identifications database: 2010 update. Nucleic Acids Res. 38, D736–D742 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Barrera, N.P. & Robinson, C.V. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 80, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Sosinsky, G.E. et al. The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. J. Struct. Biol. 161, 359–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, H., Clyborne, W.K., Sedat, J.W. & Agard, D.A. Priism: an integrated system for display and analysis of 3-D microscope images. Proc. SPIE 1660, 784–790 (1992).

    Article  Google Scholar 

  56. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  57. Dumont, R.A., Zhao, Y.D., Holt, J.R., Bahler, M. & Gillespie, P.G. Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia. J. Assoc. Res. Otolaryngol. 3, 375–389 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goodyear, R.J. & Richardson, G.P. A novel antigen sensitive to calcium chelation that is associated with the tip links and kinocilial links of sensory hair bundles. J. Neurosci. 23, 4878–4887 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mass spectrometry was carried out by the W.M. Keck Biomedical Mass Spectrometry Laboratory and The University of Virginia Biomedical Research Facility. We thank K. McDonald, R. Zalpuri and G. Min of the University of California Berkeley Electron Microscopy Laboratory for assistance with high-pressure freezing and imaging; D. Jorgens provided mentoring in high-pressure freezing. We would like to thank A. Cheng, B. Carragher and C. Potter for help with electron microscopy data collection at the National Resource for Automated Molecular Microscopy, supported by US National Institutes of Health (NIH) National Center for Research Resources grant RR017573. For technical assistance, we acknowledge A. Snyder of the Advanced Light Microscopy Core at The Jungers Center (Oregon Health & Science University), supported by shared instrumentation grants S10 RR023432 and S10 RR025440 from the National Center for Research Resources (NIH). Work described here was supported by NIH grants K99/R00 DC009412 (J.B.S.), F32 DC012455 (J.F.K.), R01 DC002368 (P.G.B.-G.), R01 DC011034 (P.G.B.-G.), P30 DC005983 (P.G.B.-G.), R01 EY007755 (L.L.D.), P30 EY10572 (L.L.D.) and P01 GM051487 (M.A.).

Author information

Authors and Affiliations

Authors

Contributions

J.-B.S. and P.G.B.-G. designed the overall approach and analysis. J.F.K. carried out immunoblotting and immunocytochemistry experiments of Figures 2 and 5, as well as Supplementary Figures 2 and 4; she also carried out quantitative immunoblots of Figure 1. J.-B.S. and J.M.P. prepared hair-bundle and epithelium samples for mass spectrometric analysis. A.H., Z.M., A.N.T. and M.A. carried out electron tomography and analyzed tomography data. N.E.S. and E.D.J. carried out mass spectrometry experiments. K.J.S. carried out immunocytochemistry experiments of Supplementary Figure 4. H.Z. carried out immunoprecipitation experiments of Figure 5. D.C. carried out the statistical analyses. P.G.B.-G. carried out mass spectrometry data analysis, with assistance from P.A.W. and L.L.D. The manuscript was written by P.G.B.-G.

Corresponding author

Correspondence to Peter G Barr-Gillespie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 12580 kb)

Supplementary Table 1

Chick hair bundle mass spectrometry data (XLS 6442 kb)

Supplementary Table 2

Proteins used to define contaminant fraction (XLS 87 kb)

Supplementary Table 3

Interactions between hair bundle proteins (XLS 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, JB., Krey, J., Hassan, A. et al. Molecular architecture of the chick vestibular hair bundle. Nat Neurosci 16, 365–374 (2013). https://doi.org/10.1038/nn.3312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing