Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memory, navigation and theta rhythm in the hippocampal-entorhinal system

Abstract

Theories on the functions of the hippocampal system are based largely on two fundamental discoveries: the amnestic consequences of removing the hippocampus and associated structures in the famous patient H.M. and the observation that spiking activity of hippocampal neurons is associated with the spatial position of the rat. In the footsteps of these discoveries, many attempts were made to reconcile these seemingly disparate functions. Here we propose that mechanisms of memory and planning have evolved from mechanisms of navigation in the physical world and hypothesize that the neuronal algorithms underlying navigation in real and mental space are fundamentally the same. We review experimental data in support of this hypothesis and discuss how specific firing patterns and oscillatory dynamics in the entorhinal cortex and hippocampus can support both navigation and memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between navigation and memory.
Figure 2: Grid cells and place cells.
Figure 3: Modular organization of the grid-cell network.
Figure 4: Cell assembly sequences, space and time tracking.
Figure 5: Theta oscillations link assembly sequences.
Figure 6: Cell assembly segregation role of theta oscillation.

Similar content being viewed by others

References

  1. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, New York, 1978).

  2. McNaughton, B.L. et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996).

    CAS  PubMed  Google Scholar 

  3. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Thompson, E. & Varela, F.J. Radical embodiment: neural dynamics and consciousness. Trends Cogn. Sci. 5, 418–425 (2001).

    Article  PubMed  Google Scholar 

  5. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I. & Moser, M.B. Path integration and the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Knierim, J.J., Kudrimoti, H.S. & McNaughton, B.L. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. J. Neurophysiol. 80, 425–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Derdikman, D. et al. Fragmentation of grid cell maps in a multicompartment environment. Nat. Neurosci. 12, 1325–1332 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Gothard, K.M., Skaggs, W.E., Moore, K.M. & McNaughton, B.L. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J. Neurosci. 16, 823–835 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Squire, L.R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Suddendorf, T. & Corballis, M.C. The evolution of foresight: what is mental time travel, and is it unique to humans? Behav. Brain Sci. 30, 299–313; discussion 313–251 (2007).

    Article  PubMed  Google Scholar 

  12. Tulving, E., Donaldson, W., Bower, G.H. & United States Office of Naval Research. Organization of Memory (Academic, New York, 1972).

  13. Buckner, R.L. The role of the hippocampus in prediction and imagination. Annu. Rev. Psychol. 61, 27–48, C21–C28 (2010).

    Article  PubMed  Google Scholar 

  14. Tulving, E. Chronesthesia: conscious awareness of subjective time. in Principles of Frontal Lobe Function (eds. Stuss, D.T. & Knight, R.C.) 311–325 (Oxford Univ. Press, New York, 2002).

  15. Buzsáki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).

    Article  PubMed  Google Scholar 

  16. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Lever, C., Wills, T., Cacucci, F., Burgess, N. & O'Keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Hasselmo, M.E. How We Remember: Brain Mechanisms of Episodic Memory (MIT Press, Cambridge, Massachusetts, USA, 2012).

  19. McClelland, J.L., McNaughton, B.L. & O'Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  20. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Manns, J.R., Hopkins, R.O., Reed, J.M., Kitchener, E.G. & Squire, L.R. Recognition memory and the human hippocampus. Neuron 37, 171–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Moser, E.I., Kropff, E. & Moser, M.B. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hafting, T., Fyhn, M., Molden, S., Moser, M.B. & Moser, E.I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Boccara, C.N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Krupic, J., Burgess, N. & O'Keefe, J. Neural representations of location composed of spatially periodic bands. Science 337, 853–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B. & Moser, E.I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Yartsev, M.M., Witter, M.P. & Ulanovsky, N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479, 103–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Ulanovsky, N. & Moss, C.F. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10, 224–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ekstrom, A.D. et al. Human hippocampal theta activity during virtual navigation. Hippocampus 15, 881–889 (2005).

    Article  PubMed  Google Scholar 

  31. Muller, R.U. & Kubie, J.L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Fyhn, M., Hafting, T., Treves, A., Moser, M.B. & Moser, E.I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.B. & Moser, E.I. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Mizuseki, K., Royer, S., Diba, K. & Buzsáki, G. Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22, 1659–1680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, X.G., Somogyi, P., Ylinen, A. & Buzsáki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Treves, A. & Rolls, E.T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Leutgeb, J.K., Leutgeb, S., Moser, M.B. & Moser, E.I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Muller, R.U., Stead, M. & Pach, J. The hippocampus as a cognitive graph. J. Gen. Physiol. 107, 663–694 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Menzel, R., Geiger, K., Joerges, J., Muller, U. & Chittka, L. Bees travel novel homeward routes by integrating separately acquired vector memories. Anim. Behav. 55, 139–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Wilson, M.A. & McNaughton, B.L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Hampson, R.E., Byrd, D.R., Konstantopoulos, J.K., Bunn, T. & Deadwyler, S.A. Hippocampal place fields: relationship between degree of field overlap and cross-correlations within ensembles of hippocampal neurons. Hippocampus 6, 281–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Miyashita, Y. Cognitive memory: cellular and network machineries and their top-down control. Science 306, 435–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Suzuki, W.A., Miller, E.K. & Desimone, R. Object and place memory in the macaque entorhinal cortex. J. Neurophysiol. 78, 1062–1081 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Wood, E.R., Dudchenko, P.A., Robitsek, R.J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kumaran, D. & McClelland, J.L. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol. Rev. 119, 573–616 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Heit, G., Smith, M.E. & Halgren, E. Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 333, 773–775 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Trope, Y. & Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 117, 440–463 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Navigli, R. & Lapata, M. An experimental study of graph connectivity for unsupervised word sense disambiguation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 678–692 (2010).

    Article  PubMed  Google Scholar 

  51. Nakashiba, T. et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buckner, R.L. & Carroll, D.C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  53. Burgess, N., Maguire, E.A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Jensen, O. & Lisman, J.E. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 28, 67–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Lisman, J.E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Howard, M.W. & Kahana, M.J. Contextual variability and serial position effects in free recall. J. Exp. Psychol. Learn. Mem. Cogn. 25, 923–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Shrager, Y., Kirwan, C.B. & Squire, L.R. Neural basis of the cognitive map: path integration does not require hippocampus or entorhinal cortex. Proc. Natl. Acad. Sci. USA 105, 12034–12038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frank, L.M., Brown, E.N. & Wilson, M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsáki, G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64, 267–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muller, R.U., Bostock, E., Taube, J.S. & Kubie, J.L. On the directional firing properties of hippocampal place cells. J. Neurosci. 14, 7235–7251 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McNaughton, B.L., Barnes, C.A. & O'Keefe, J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).

    Article  CAS  PubMed  Google Scholar 

  64. Royer, S., Sirota, A., Patel, J. & Buzsáki, G. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J. Neurosci. 30, 1777–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Itskov, V., Pastalkova, E., Mizuseki, K., Buzsáki, G. & Harris, K.D. Theta-mediated dynamics of spatial information in hippocampus. J. Neurosci. 28, 5959–5964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wickelgren, W.A. Webs, cell assemblies, and chunking in neural nets: introduction. Can. J. Exp. Psychol. 53, 118–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Colgin, L.L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Tort, A.B., Komorowski, R.W., Manns, J.R., Kopell, N.J. & Eichenbaum, H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 106, 20942–20947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Axmacher, N. et al. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. USA 107, 3228–3233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Canolty, R.T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Griesmayr, B., Gruber, W.R., Klimesch, W. & Sauseng, P. Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiol. Learn. Mem. 93, 208–215 (2010).

    Article  PubMed  Google Scholar 

  74. Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cereb. Cortex 6, 93–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B. & Buhl, E.H. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38, 315–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Buzsáki, G. & Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Maurer, A.P., Cowen, S.L., Burke, S.N., Barnes, C.A. & McNaughton, B.L. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J. Neurosci. 26, 13485–13492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Geisler, C., Robbe, D., Zugaro, M., Sirota, A. & Buzsáki, G. Hippocampal place cell assemblies are speed-controlled oscillators. Proc. Natl. Acad. Sci. USA 104, 8149–8154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Skaggs, W.E., McNaughton, B.L., Wilson, M.A. & Barnes, C.A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. O'Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Geisler, C. et al. Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc. Natl. Acad. Sci. USA 107, 7957–7962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burgess, N. & O'Keefe, J. Models of place and grid cell firing and theta rhythmicity. Curr. Opin. Neurobiol. 21, 734–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diba, K. & Buzsáki, G. Hippocampal network dynamics constrain the time lag between pyramidal cells across modified environments. J. Neurosci. 28, 13448–13456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lisman, J.E. & Idiart, M.A. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Jezek, K., Henriksen, E.J., Treves, A., Moser, E.I. & Moser, M.B. Theta-paced flickering between place-cell maps in the hippocampus. Nature 478, 246–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Johnson, A. & Redish, A.D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gupta, A.S., van der Meer, M.A., Touretzky, D.S. & Redish, A.D. Segmentation of spatial experience by hippocampal theta sequences. Nat. Neurosci. 15, 1032–1039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kjelstrup, K.B. et al. Finite scale of spatial representation in the hippocampus. Science 321, 140–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Dusek, J.A. & Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. Proc. Natl. Acad. Sci. USA 94, 7109–7114 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. MacDonald, C.J., Lepage, K.Q., Eden, U.T. & Eichenbaum, H. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hasselmo, M.E. Arc length coding by interference of theta frequency oscillations may underlie context-dependent hippocampal unit data and episodic memory function. Learn. Mem. 14, 782–794 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fujisawa, S., Amarasingham, A., Harrison, M.T. & Buzsáki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mankin, E.A. et al. Neuronal code for extended time in the hippocampus. Proc. Natl. Acad. Sci. USA 109, 19462–19467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Naya, Y. & Suzuki, W.A. Integrating what and when across the primate medial temporal lobe. Science 333, 773–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Koenig, J., Linder, A.N., Leutgeb, J.K. & Leutgeb, S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Fell, J., Klaver, P., Elger, C.E. & Fernandez, G. The interaction of rhinal cortex and hippocampus in human declarative memory formation. Rev. Neurosci. 13, 299–312 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Fishell for comments, Heather McKellar for assistance, and the US National Institutes of Health (NS34994; MH54671; NS 074015), International Human Frontiers Science Program Organization (RGP0032/2011), James S. McDonnell Foundation, Global Institute for Scientific Thinking, European Research Council ('CIRCUIT' Advanced Investigator Grant, Grant Agreement 232608), Louis-Jeantet Prize for Medicine, Kavli Foundation and Centre of Excellence scheme of the Research Council of Norway for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Buzsáki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzsáki, G., Moser, E. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16, 130–138 (2013). https://doi.org/10.1038/nn.3304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing