Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A precise form of divisive suppression supports population coding in the primary visual cortex

An Erratum to this article was published on 01 June 2009

This article has been updated

Abstract

The responses of neurons in the primary visual cortex (V1) to an optimally oriented grating are suppressed when a non-optimal grating is superimposed. Although cross-orientation suppression is thought to reflect mechanisms that maintain a distributed code for orientation, the effect of superimposed gratings on V1 population responses is unknown. Using intrinsic signal optical imaging, we found that patterns of tree shrew V1 activity evoked by superimposed equal-contrast gratings were predicted by the averages of patterns evoked by individual component gratings. This prediction held across contrasts, for summed sinusoidal gratings or nonsumming square-wave gratings, and was evident in single-unit extracellular recordings. Intracellular recordings revealed consistent levels of suppression throughout the time course of subthreshold responses. These results indicate that divisive suppression powerfully governs population responses to multiple orientations. Moreover, the specific form of suppression that we observed appears to support independent population codes for stimulus orientation and strength and calls for a reassessment of mechanisms that underlie cross-orientation suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic signal optical images of tree shrew V1 acquired during presentation of single and superimposed gratings.
Figure 2: The component mean consistently predicted responses to superimposed gratings.
Figure 3: Responses to superimposed sinusoidal gratings at different contrasts.
Figure 4: Single-unit responses to single and superimposed gratings.
Figure 5: Intracellularly recorded responses to single and superimposed gratings.
Figure 6: Relationship of intracellularly recorded responses to superimposed and component gratings across time.

Similar content being viewed by others

Change history

  • 06 May 2009

    In the version of this article initially published, the gray curve in Figure 1j was shifted to the left. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Morrone, M.C., Burr, D.C. & Maffei, L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc. R. Soc. Lond. B 216, 335–354 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Bonds, A.B. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2, 41–55 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. DeAngelis, G.C., Robson, J.G., Ohzawa, I. & Freeman, R.D. Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysiol. 68, 144–163 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Geisler, W.S. & Albrecht, D.G. Cortical neurons: isolation of contrast gain control. Vision Res. 32, 1409–1410 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Carandini, M. & Heeger, D.J. Summation and division by neurons in primate visual cortex. Science 264, 1333–1336 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simoncelli, E.P. & Schwartz, O. Image statistics and cortical normalization models. in Advances in Neural Information Processing Systems (eds. Kearns, M.S., Sollar, S.A. & Cohn, D.A.) 153–159 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  9. Valerio, R. & Navarro, R. Optimal coding through divisive normalization models of V1 neurons. Network 14, 579–593 (2003).

    Article  PubMed  Google Scholar 

  10. Schwartz, O. & Simoncelli, E.P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. De Valois, K.K., De Valois, R.L. & Yund, E.W. Responses of striate cortex cells to grating and checkerboard patterns. J. Physiol. (Lond.) 291, 483–505 (1979).

    Article  CAS  Google Scholar 

  12. Pollen, D. & Ronner, S. Visual cortical neurons as localized spatial-frequency filters. IEEE Trans. Syst. Man Cybern. 13, 907–916 (1983).

    Article  Google Scholar 

  13. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Basole, A., White, L.E. & Fitzpatrick, D. Mapping multiple features in the population response of visual cortex. Nature 423, 986–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Basole, A., Kreft-Kerekes, V., White, L.E. & Fitzpatrick, D. Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Prog. Brain Res. 154, 121–134 (2006).

    Article  PubMed  Google Scholar 

  16. Skottun, B.C., Bradley, A., Sclar, G., Ohzawa, I. & Freeman, R.D. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J. Neurophysiol. 57, 773–786 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Sclar, G. & Freeman, R.D. Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Exp. Brain Res. 46, 457–461 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Maffei, L. & Fiorentini, A. The unresponsive regions of visual cortical receptive fields. Vision Res. 16, 1131–1139 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Knierim, J.J. & van Essen, D.C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Kapadia, M.K., Ito, M., Gilbert, C.D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Sengpiel, F., Sen, A. & Blakemore, C. Characteristics of surround inhibition in cat area 17. Exp. Brain Res. 116, 216–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Kabara, J.F. & Bonds, A.B. Modification of response functions of cat visual cortical cells by spatially congruent perturbing stimuli. J. Neurophysiol. 86, 2703–2714 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Sengpiel, F. & Vorobyov, V. Intracortical origins of interocular suppression in the visual cortex. J. Neurosci. 25, 6394–6400 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, M.A., Bair, W. & Movshon, J.A. Dynamics of suppression in macaque primary visual cortex. J. Neurosci. 26, 4826–4834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Priebe, N.J. & Ferster, D. Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat. Neurosci. 9, 552–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Li, B., Thompson, J.K., Duong, T., Peterson, M.R. & Freeman, R.D. Origins of cross-orientation suppression in the visual cortex. J. Neurophysiol. 96, 1755–1764 (2006).

    Article  PubMed  Google Scholar 

  28. Rust, N.C. & Movshon, J.A. In praise of artifice. Nat. Neurosci. 8, 1647–1650 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bosking, W.H., Kretz, R., Pucak, M.L. & Fitzpatrick, D. Functional specificity of callosal connections in tree shrew striate cortex. J. Neurosci. 20, 2346–2359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chisum, H.J., Mooser, F. & Fitzpatrick, D. Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23, 2947–2960 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Recanzone, G.H., Wurtz, R.H. & Schwarz, U. Responses of MT and MST neurons to one and two moving objects in the receptive field. J. Neurophysiol. 78, 2904–2915 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Britten, K.H. & Heuer, H.W. Spatial summation in the receptive fields of MT neurons. J. Neurosci. 19, 5074–5084 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zoccolan, D., Cox, D.D. & DiCarlo, J.J. Multiple object response normalization in monkey inferotemporal cortex. J. Neurosci. 25, 8150–8164 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zemel, R.S., Dayan, P. & Pouget, A. Probabilistic interpretation of population codes. Neural Comput. 10, 403–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Carandini, M. & Sengpiel, F. Contrast invariance of functional maps in cat primary visual cortex. J. Vis. 4, 130–143 (2004).

    Article  PubMed  Google Scholar 

  39. Freeman, T.C., Durand, S., Kiper, D.C. & Carandini, M. Suppression without inhibition in visual cortex. Neuron 35, 759–771 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Carandini, M., Heeger, D.J. & Senn, W. A synaptic explanation of suppression in visual cortex. J. Neurosci. 22, 10053–10065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boudreau, C.E. & Ferster, D. Short-term depression in thalamocortical synapses of cat primary visual cortex. J. Neurosci. 25, 7179–7190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the members of the Fitzpatrick laboratory for helpful discussions and assistance with data collection and analysis. This work was supported by US National Institutes of Health grants EY06821 to D.F. and EY016319 to S.P.M.

Author information

Authors and Affiliations

Authors

Contributions

S.P.M. designed the study with D.F. and conducted all of the experiments. T.R.T. wrote the stimulus presentation and data analysis software, provided expertise in intracellular recording techniques and assisted with data interpretation. S.P.M. and D.F. wrote the manuscript.

Corresponding author

Correspondence to Sean P MacEvoy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacEvoy, S., Tucker, T. & Fitzpatrick, D. A precise form of divisive suppression supports population coding in the primary visual cortex. Nat Neurosci 12, 637–645 (2009). https://doi.org/10.1038/nn.2310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2310

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing