Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter

A Corrigendum to this article was published on 01 July 2008

This article has been updated

Abstract

A defining feature of glial cells has been their inability to generate action potentials. We show here that there are two distinct types of morphologically identical oligodendrocyte precursor glial cells (OPCs) in situ in rat CNS white matter. One type expresses voltage-gated sodium and potassium channels, generates action potentials when depolarized and senses its environment by receiving excitatory and inhibitory synaptic input from axons. The other type lacks action potentials and synaptic input. We found that when OPCs suffered glutamate-mediated damage, as occurs in cerebral palsy, stroke and spinal cord injury, the action potential–generating OPCs were preferentially damaged, as they expressed more glutamate receptors, and received increased spontaneous glutamatergic synaptic input in ischemia. These data challenge the idea that only neurons generate action potentials in the CNS and imply that the development of therapies for demyelinating disorders will require defining which OPC type can carry out remyelination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligodendrocyte precursor identification.
Figure 2: Two classes of oligodendrocyte precursor glia.
Figure 3: Oligodendrocyte precursors proliferate, but do not label for astrocyte or neuronal markers.
Figure 4: Oligodendrocyte precursor glia with Na+ current generate action potentials.
Figure 5: Oligodendrocyte precursor glia with and without INa sense the environment differently.
Figure 6: Oligodendrocyte precursor glia with and without INa respond differently to ischemia.

Similar content being viewed by others

Change history

  • 21 May 2008

    In the version of this article initially published, the units for the values reported for resistance in Figure 2i,j were incorrect. The correct unit should be gigaohms. In addition, the authors did not state that the cell death experiments in Figure 6e,f were carried out using a physiological extracellular magnesium concentration of 1 mM. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Nishiyama, A., Lin, X.-H., Giese, N., Heldin, C.-H. & Stallcup, W.B. Colocalization of NG2 proteoglycan and PDGF alpha receptor on O2A progenitor cells in the developing rat brain. J. Neurosci. Res. 43, 299–314 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Nishiyama, A., Watanabe, M., Yang, Z. & Bu, J. Identity, distribution and development of polydendrocytes: NG2-expressing glial cells. J. Neurocytol. 31, 437–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Stallcup, W.B. The NG2 proteoglycan: past insights and future prospects. J. Neurocytol. 31, 423–435 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Horner, P.J. et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dawson, M.R., Polito, A., Levine, J.M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 24, 476–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Volpe, J.J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50, 553–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Levine, J.M. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci. 14, 4716–4730 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keirstead, H.S., Levine, J.M. & Blakemore, W. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22, 161–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Gensert, J.M. & Goldman, J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. McTigue, D.M., Wei, P. & Stokes, B.T. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J. Neurosci. 21, 3392–3400 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horner, P.J., Thallmair, M. & Gage, F.H. Defining the NG2-expressing cell of the adult CNS. J. Neurocytol. 31, 469–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Levine, J.M., Reynolds, R. & Fawcett, J.W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Groves, A.K. et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362, 453–455 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ligon, K.L. et al. The oligodendroglial lineage marker Olig2 is universally expressed in diffuse gliomas. J. Neuropathol. Exp. Neurol. 63, 499–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Ligon, K.L. et al. Developmental of NG2 neural progenitor cells requires Olig gene function. Proc. Natl. Acad. Sci. USA 103, 7853–7858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Káradóttir, R., Cavelier, P., Bergersen, L. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1168 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Káradóttir, R. & Attwell, D. Combining patch-clamping of cells in brain slices with immunocytochemical labelling to define cell type and developmental stage. Nat. Protoc. 1, 1977–1986 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dawson, M.R.L., Levine, J.M. & Reynolds, R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res. 61, 471–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Alonso, G. NG2 proteoglycan-expressing cells of the adult rat brain: possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49, 318–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. (Lond.) 561, 109–122 (2004).

    Article  CAS  Google Scholar 

  23. Dayer, A.G., Cleaver, K.M., Abouantoun, T. & Cameron, H.A. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168, 415–427 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular release of glutamate from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Follett, P.L., Rosenberg, P.A., Volpe, J.J. & Jensen, F.E. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci. 20, 9235–9241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Káradóttir, R. & Attwell, D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145, 1426–1438 (2007).

    Article  PubMed  Google Scholar 

  28. Allen, N.J. & Attwell, D. The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. J. Physiol. (Lond.) 561, 485–498 (2004).

    Article  CAS  Google Scholar 

  29. Li, S., Mealing, G.A., Morley, P. & Stys, P.K. Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci. 19, RC16 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barres, B.A., Koroshetz, W.J., Swartz, K.J., Chun, L.L. & Corey, D.P. Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4, 507–524 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Newell, E.W. & Schlichter, L.C. Integration of K+ and Cl currents regulate steady-state and dynamic membrane potentials in cultured rat microglia. J. Physiol. (Lond.) 567, 869–890 (2005).

    Article  CAS  Google Scholar 

  32. Chittajallu, R., Aguirre, A.A. & Gallo, V. Downregulation of platelet-derived growth factor alpha receptor–mediated tyrosine kinase activity as a cellular mechanism for K+-channel regulation during oligodendrocyte development in situ. J. Neurosci. 25, 8601–8610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Back, S.A. et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci. 21, 1302–1312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawasaki, K., Traynelis, S.F. & Dingledine, R. Different responses of CA1 and CA3 regions to hypoxia in rat hippocampal slice. J. Neurophysiol. 63, 385–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Vornov, J.J., Tasker, R.C. & Coyle, J.T. Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp. Neurol. 114, 11–22 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Fukuda, A. et al. NMDA receptor–mediated differential laminar susceptibility to the intracellular Ca2+ accumulation induced by oxygen-glucose deprivation in rat neocortical slices. J. Neurophysiol. 79, 430–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Patt, S. et al. Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience 71, 601–611 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Marie, Y. et al. Olig2 as a specific marker of oligodendroglial tumour cells. Lancet 358, 298–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Allen, N.J., Káradóttir, R. & Attwell, D. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosci. 25, 848–859 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kondo, R.P., Wang, S.Y., John, S.A., Weiss, J.N. & Goldhaber, J.I. Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J. Mol. Cell. Cardiol. 32, 1859–1872 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Stallcup (Burnham Institute) for NG2 antibody, D. Rowitch, C.D. Stiles and J. Alberta (Harvard University) for Olig2 antibody, and R. Mirsky, K. Jessen, L. Jimenes-Diaz, S. Rakic, C. Eder, P. Mobbs, G. Frugier, A. Silver, A. Gibb and S. Bolsover for other antibodies, tissue and advice. This work was supported by the Wellcome Trust, a Wolfson-Royal Society Award to D.A. and a Royal Society Dorothy Hodgkin Fellowship to R.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnhildur Káradóttir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Káradóttir, R., Hamilton, N., Bakiri, Y. et al. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11, 450–456 (2008). https://doi.org/10.1038/nn2060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing