Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
In the brains of patients with epilepsy, apolipoprotein E-mediated lipid transfer from hyperactive neurons to astrocytes results in lipid metabolism reprogramming and formation of lipid-accumulated reactive astrocytes. These astrocytes exacerbate abnormal discharges of neighboring neurons and, in mice, aggravate seizure symptoms, leading to disease progression.
Chen et al. describe a new subtype of reactive astrocyte formed by APOE-mediated lipid accumulation in individuals with epilepsy and mouse models. These reactive astrocytes aggravate seizure symptoms and could serve as new therapeutic targets for epilepsy.
The mechanisms of remyelination are unclear. Here, the authors develop and use two-photon apoptotic targeted ablation and show a form of rapid synchronous remyelination mediated by a distinct subset of OPCs that can occur in adult mice but not in aging.
The authors compare three classes of models—acoustic, semantic and sound-to-event deep neural network—to determine which can best link specific features of auditory stimuli to predicted functional magnetic resonance imaging responses in auditory cortical regions.
The caudal ventrolateral medulla was thought to be involved in pain control, but its pathway was unknown. Here, Gu et al. identify the molecular components of a caudal ventrolateral medulla–locus coeruleus–spinal cord pathway and show it has a role in counter-stimulus pain control.
Buch et al. used machine learning to identify brain–behavior dimensions that define four robust ASD subtypes linked to distinct molecular pathways and that suggest personalized therapeutic targets for circuit-based neuromodulation and pharmacotherapy.
This study mapped the developmental trajectory of transmission speed in the human brain by using electrical pulses and intracranial recordings. The authors found that these pulses travel with increasing speeds up to at least the age of 30.
The neuroscience of hormonal contraceptives is a vital but relatively new field. Existing studies are limited in size and scope, but they nonetheless highlight that the effects of hormonal contraceptives on the nervous system are complex and can vary because of individual differences, contraceptive type and formulation, and timing of use, among other factors. Neuroscientists can empower individuals with information about the biopsychological effects of hormonal contraceptives by delving more deeply into these effects in rigorous randomized controlled trials, large-scale studies that examine population-level trends, and dense imaging or intensive longitudinal studies that examine individual-level effects.
The authors find that 40-Hz flickering light does not suppress Aβ, activate microglia or engage native gamma oscillations. Thus, visual flicker stimulation may not be a viable mechanism for altering AD pathology and modulating deep structures.
We developed a wearable platform (the Neuro-stack) for recording single-neuron and local field potentials in freely moving humans. The Neuro-stack enabled the recording of single-neuron activity during walking behavior in humans. The platform also enables personalized stimulation during real-time decoding of neural activity, which can potentially improve neurostimulation treatments.
Despite extensive studies on how social networks affect behavior at the population level, little is known about how the human brain makes decisions in networked environments. This study shows that the brain flexibly weighs information received from a social contact according to how well-connected that contact is on the network responsible for information transmission.
The Neuro-stack is a wearable platform for recording from single neurons in freely moving humans. It also allows for personalized stimulation during real-time decoding of neural activity.
The authors developed flexible, unfolded mesh electronics for implantation in multiple brain regions of mice. The probes show minimal immune response and electrode drift, enabling stable recording of single-unit action potentials from the same neurons during the adult life of animals.
Information flowing among connected peers shapes our beliefs and decisions. Jiang et al. show that learning on social networks is biased toward well-connected individuals, with the dorsal anterior cingulate cortex tracking connectedness on the network that routes learning.