Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Solid oxide materials typically need high temperatures to allow appreciable ion transport, limiting their flexibility as electrolytes for energy devices. Lu et al. now show unusually high proton conductivity in a hydrogenated oxide between 40 °C and 140 °C, which they attribute to ordered vacancy channels and high proton concentrations.
Ammonia has been proposed as a shipping fuel, yet potential adverse side-effects are poorly understood. We argue that if nitrogen releases from ammonia are not tightly controlled, the scale of the demands of maritime transport are such that the global nitrogen cycle could be substantially altered.
Dr Mohammad Hadi Mohammadi, Council for At-Risk Academics Research Fellow at the University of Exeter, shares with Nature Energy their story about fleeing Afghanistan, settling down in the UK and their hope to return home one day.
Charge generation in organic photovoltaics hinges upon the frontier molecular orbital energies of organic semiconductors, yet their precise determination is not trivial. Now, researchers compare various methods to determine these energies and show the need for an energy level offset to assist charge generation in non-fullerene-based solar cells.
The growing proportion of renewable energy increases the need to align consumer consumption behaviours with fluctuating energy supply. A new study pairs objective smart meter electricity data with subjective survey data to offer important insights into whether consumers are aware of their own electricity use patterns and thus whether they are prepared for an increasingly dynamic energy system.
Achieving high ionic conductivity at close to room temperature in solid oxide electrolytes is challenging due to the large thermal activation needed for ion transport. Now, a hydrogen-intercalated brownmillerite oxide, SrCoO2.5, has been shown to function as a high-performance proton conducting electrolyte for fuel cells below 200°C.
One of the biggest hurdles to realise high-performance Li-metal batteries is the instability of Li metal towards all relevant electrolytes. Now, an approach is reported to improve Li cells’ stability by upshifting the Li electrodes’ potential to reduce their voltage gap with the electrolyte electrochemical stability windows.
Real-time tracking of the dynamic chemistry in commercial batteries by infrared fibre spectroscopy provides insight into the parasitic reactions that occur at the electrodes and in the electrolyte. This chemical-sensing method enables identification of chemical species and observation of Na(Li) inventory changes upon cycling, providing essential information for improving battery technology.
A phase heterojunction (PHJ) solar cell is formed by interfacing two phases of the perovskite CsPbI3 — each of which exhibits different opto-electronic properties. Devices based on PHJs reach a maximum power conversion efficiency of 20.17%, surpassing the 15% achieved by devices based on either of the single phases alone.
The development of high-energy Li-ion batteries is being geared towards cobalt-free cathodes because of economic and social–environmental concerns. Here the authors analyse the chemistry, thermodynamics and resource potential of these strategic transition metals, and propose that the use of cobalt will likely continue.
Projects are under way for direct-current ultra-high-voltage transmission lines that would allow trading of renewable electricity across world regions. Guo et al. use integrated assessment models to explore different scenarios for the operation of these projects and assess their potential for decarbonization.
It is challenging to decipher electrochemical processes, especially at the molecular scale, inside a working battery. Here Tarascon and colleagues develop a technique that pairs optical fibre sensors with operando infrared spectroscopy to reveal the dynamic mechanisms of key processes in commercial Li-ion and Na-ion batteries.
Fabricating perovskite heterojunctions is challenging. Now, Ji et al. form a phase heterojunction with two polymorphs of CsPbI3, leading to 20.1% efficiency in inorganic perovskite solar cells.
Achieving both high efficiency and stability in organic solar cells is challenging. Now, Liang et al. show that oligomer acceptors improve the molecular packing and morphology of the active layer, affording a 15% efficiency and enhanced stability.
How well households understand their own energy usage patterns may impact the effectiveness of demand response initiatives. Zanocco et al. find that only half of a sample of California households were able to identify their own usage pattern from among four test patterns before COVID-19 restrictions.
Understanding the drivers of opposition to renewable energy infrastructure is increasingly important. Here the authors find an association between wind farm opposition and belief in conspiracy theories and test the effectiveness of information provision in countering it.
Solid oxide ionic conductors typically require elevated temperature to activate ionic transport. Here the authors report unusually high proton conductivity close to room temperature in a hydrogenated oxide, HSrCoO2.5, which they attribute to the intrinsically ordered oxygen vacancy channels and high proton concentration.
It is a challenging task to understand the reversibility of lithium-metal anodes in batteries. Here the authors identify the lithium electrode potential as a critical factor that affects the anode reversibility and subsequently propose an electrolyte design to improve the cycling performance.