Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Polysulfide-based redox flow batteries have great potential for grid-scale storage, but they suffer from performance deterioration primarily due to active species cross-over through membranes. Yi-Chun Lu and team develop a Nafion-based membrane that prevents the cross-over and enables these batteries to achieve long-term operational stabilities.
For hydrogen to make a greater impact in our energy systems, attention is required on the integration of new catalysts into fuel cells and their needs in emerging applications, such as heavy-duty transport.
Flow batteries based on, for example, polysulfide suffer severe performance deterioration due to active species crossover in membranes. Now, a charge-reinforced ion-selective membrane is designed to support long-term cycling of polysulfide redox flow batteries by blocking the crossover.
Wind energy’s contribution to primary energy supply has increased in the past decade, while technology costs have decreased faster than predicted. New work finds that recent expert estimates of wind technology costs by 2050 are around half what they were in 2015, implying a bigger role for wind energy in low-carbon development pathways.
Electrochromic windows can reduce buildings’ energy demand and improve occupants’ comfort, yet they struggle to fully meet market needs. Now, researchers demonstrate that polymer additives improve light and solar heat modulation of reflective electrochromic windows, with potential for durable, large-scale and low-cost manufacturing.
Research has studied what makes people adopt electric vehicles since before they were commercially available. Now, a new study examines the next important issue for the future of electrification of personal transportation: what makes electric vehicle owners ditch them.
Long-duration energy storage technologies can be a solution to the intermittency problem of wind and solar power but estimating technology costs remains a challenge. New research identifies cost targets for long-duration storage technologies to make them competitive against different firm low-carbon generation technologies.
Fuel cells are increasingly being considered for powertrains of heavy-duty transportation. Cullen et al. survey the technical challenges of fuel cells at both the system and materials level for transportation application and outline the roadmap for future development.
The promising performance of low-platinum-loading oxygen reduction reaction catalysts in preliminary electrochemical tests is rarely translated into similarly impressive performance in real fuel cells. In this Review, Li and colleagues explore the underlying reasons for this issue and outline strategies to overcome it.
Batteries keep degrading even when they are not in operation, but their calendar life is rarely studied in advanced batteries that are still in the development stage. Here the authors quantify the calendar ageing of Li metal anodes and report its underlying mechanisms.
Charging at high voltages in principle makes batteries energy dense, but this is often achieved at the cost of the cycling stability. Here the authors design a sulfonamide-based electrolyte to enable a Li metal battery with a state-of-the-art cathode at an ultra-high voltage of 4.7 V while maintaining cyclability.
Wind and solar energy must be complemented by a combination of energy storage and firm generating capacity. Here, Sepulveda et al. assess the economic value and system impact of a wide range of possible long-duration energy storage technologies, providing insights to guide innovation and policy.
The development of aqueous redox flow batteries (ARFBs) has been plagued by high material costs and poor operating stability. Here the authors report a membrane design to enable polysulfide-based ARFBs with minimal capacity decay over long cycles and durations as well as competitive cost-effectiveness.
Passivating contacts hold promise for silicon solar cells yet the simultaneous optimization of conductivity, defect passivation and optical transparency remains challenging. Now Köhler et al. devise a passivating contact based on a double layer of nanocrystalline silicon carbide that overcomes these trade-offs.
An often-overlooked aspect of vehicle electrification is how often and why owners give up on electric vehicles. Using surveys of California electric vehicle owners, Hardman and Tal find discontinuance rates of 20% and 18% among plug-in hybrid and battery electric vehicle owners, and examine the motivations behind discontinuance.
Dynamic windows can reduce a building’s energy demand, yet the control of light and heat transmission remains challenging. Strand et al. show that polymer inhibitors improve the morphology of metal films allowing a wide modulation of light and heat flow in windows based on reversible metal electrodeposition.
Costs of renewable energy generation have fallen rapidly in recent years, often faster than predicted. Wiser et al. undertake an expert elicitation survey to project wind power costs to 2050, finding substantial continued cost reductions, and compare back to a previous survey to understand what has changed.
LiMn2O4 spinel has a robust structure with a three-dimensional network of channels for fast Li+ conduction. Despite its relatively low electrochemical capacity, LiMn2O4 has found success as a cost-effective and high-power cathode for the Li-ion battery industry.