
ARTICLE

�nATuRE CommunICATIons | 2:545 | DoI: 10.1038/ncomms1562 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

Received 23 Jun 2011 | Accepted 21 oct 2011 | Published 22 nov 2011 DOI: 10.1038/ncomms1562

metabolism is altered in many highly prevalent diseases and is controlled by a complex network 
of intracellular regulators. monitoring cell metabolism during treatment is extremely valuable 
to investigate cellular response and treatment efficacy. Here we describe a nuclear magnetic 
resonance-based method for screening of the metabolomic response of drug-treated mammalian 
cells in a 96-well format. We validate the method using drugs having well-characterized targets 
and report the results of a screen of a kinase inhibitor library. Four hits are validated from their 
action on an important clinical parameter, the lactate to pyruvate ratio. An eEF-2 kinase inhibitor 
and an nF-kB activation inhibitor increased lactate/pyruvate ratio, whereas an mK2 inhibitor 
and an inhibitor of PKA, PKC and PKG induced a decrease. The method is validated in cell lines 
and in primary cancer cells, and may have potential applications in both drug development and 
personalized therapy. 
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Metabolism has a central role in many diseases and recent 
genome-wide reconstructions have defined the number 
of metabolic enzymes in the human genome and their 

relationships1. The large size and the connectivity of the metabolic 
network suggest that multiple controllers are needed for a robust 
control of its function and indeed metabolism is regulated within 
cells by large combinations of regulators, including transcription 
factors, microRNAs (miRs), allosteric effects of metabolites and 
signal transduction pathways. Therefore, there is a clear need for a 
well-characterized set of drugs and research tools that function on 
metabolism.

To accelerate drug discovery, over the last decade, high-through-
put screening (HTS) has gained widespread popularity in pharma-
ceutical companies and increasingly in academia to conduct a large 
number of biochemical, genetic or pharmacological tests2–4. Most 
screens monitor a single variable, often related to the action on a 
single target. Screening with a multivariate readout, also called high 
content screening (HCS), has recently become more popular, and 
might facilitate the identification of interventions for more com-
plex phenotypes. Until now, HCS has been mainly associated with 
automated digital microscopy3–5. Using omic measurements for 
HCS would have the advantage of providing multivariate readouts 
more clearly linked to the drug targets and more easily amenable 
to network-based modelling and therefore to mechanistic insight. 
For example, a model could include the kinases targeted by kinase 
inhibitors (KIs), metabolic enzymes regulated by these kinases and 
the metabolites affected by these enzymes. We are not aware of  
any report of a drug library screen on mammalian cells that uses 
metabolomics.

High-resolution NMR spectroscopy and mass spectrometry 
(MS) are the most common analytical platforms for the identifica-
tion and quantification of intracellular and extracellular metabo-
lites6–11. Regardless of sample volume and analytical techniques 
used, several crucial steps are required for separating the culture 
media from the cells, and extracting the intracellular metabo-
lites using organic solvents7,10. Depending on the characteristics 
of the cells being extracted, the overall extraction process typi-
cally includes centrifugation steps, organic phase separation and 
lengthy drying procedures. The dried intracellular extract is then 
re-dissolved in solvents suitable for the analytical technique.  
A recent high-throughput metabolomic study has been applied 
to a 96-well plate to study the intracellular yeast metabolome12. 
To maximize the information contained in a multi-well plate, the 
authors have optimized cultivation, quenching and extraction 
of yeast pellets before chemical derivatization and subsequent 
gas chromatography/time of flight MS analysis. Although all the 
abovementioned approaches are extremely useful for obtaining 
clear and detailed information from both intra- and extra-cellular 
metabolism, they have not been optimized and used for the rapid 
preparation and metabolomic screening of hundreds of drug-
treated mammalian cell samples.

In this paper, we describe a high-resolution NMR-based method 
for screening the global metabolic changes induced by drug inter-
ventions in primary cells and cell lines performed in a 96-well plate 
format with a simple and rapid sample preparation. We first vali-
dated the screening method using both suspension and adherent 
carcinoma cell lines, and primary cells treated with a small number 
of drugs having well characterized targets. To validate this approach, 
we applied unsupervised multivariate statistical modelling and cal-
culated the Z-factor value, a commonly used parameter for moni-
toring the quality of HTS assays13–15. Then, as a large screening 
application, we profiled the metabolomic response of cancer cells to 
a library of KIs. The development of a robust high-content metabo-
lomic platform would be extremely valuable to accelerate the under-
standing of the in vitro and in vivo actions of drugs and aid their 
incorporation into therapeutic settings.

Results
Metabolomic NMR-based drug screening validation. A crucial 
step in the development of a metabolomics screening method 
exploiting a NMR platform is to design a quick, simple, robust 
and reproducible sample preparation protocol. Here, we have 
developed a procedure for screening the response of a sub-selection 
of metabolites from cells seeded in a 96-well plate without a lengthy 
sample preparation.

The cells of interest were seeded in a 96-well plate and treated 
with several drugs (Fig. 1a). To lyse the cells and immediately quench 
their metabolism we used the procedure detailed in the Methods 
section and in Figure 1. Briefly, sodium dodecyl sulphate (SDS; final 
concentration 0.5% w/v) was added to each well of the 96-well plate 
and the cells (in medium and SDS) were immediately ultrasonicated 
by immersing the plate in an ice-cold sonicating water bath. The 
entire content of the well (endo- and exo-metabolome) was then 
transferred into a 3-mm NMR tube containing phosphate buffer and 
trimethylsilylpropionate-2,2,3,3-d4 (TMSP). This simple and rapid 
sample preparation was then followed by NMR spectra acquisition. 
The overall time for lysing the cells and quenching their enzymatic 
activity was approximately 5 min.

To evaluate the robustness and reproducibility of this method 
in stopping the cellular enzymatic activity, we compared the effect  
of adding different concentrations of SDS (final concentration 
0.01–2% w/v) on cell viability and ATP levels (Supplementary  
Fig. S1). No enzymatic activity was detected upon addition of 0.1% 
SDS; however, we decided to exceed the critical micelle concentra-
tion of this detergent and use a final concentration 0.5% w/v to guar-
antee the complete quenching of cellular metabolism.

To further validate these results, we monitored the metabolic 
variations in CCRF-CEM (non-adherent) samples by acquiring  
a series of NMR spectra every 30 min over a period of 8 h. We  
compared live cells (Fig. 1b), cells lysed using only ultrasonication 
(Supplementary Fig. S2) and cells lysed and inactivated using com-
bined 0.5% SDS-d25 and ultrasonication (Fig. 1c). All the samples 
prepared using the combined SDS/ultrasonication method dis-
played no detectable metabolic alteration for the entire period of 
acquisition (8 h). On the contrary, metabolic changes (for example, 
glucose consumption and lactate production; Fig. 1a; Supplemen-
tary Fig. S2) were observed for samples containing live or ultrasoni-
cated cells (incomplete quenching process). Multivariate statistical 
modelling using principal component analysis (PCA) was also per-
formed on the spectra acquired on live, lysed and on simultaneously 
lysed and inactivated cells (Supplementary Fig. S3). The PCA plot 
shows important metabolic perturbation for live as well as lysed 
cells; the extremely tight grouping of the time-series NMR spectra 
acquired on samples of cells previously lysed and SDS-inactivated 
clearly demonstrates the absence of residual metabolic activity.

Notably, the use of labelled SDS (98% SDS-d25) minimizes the sig-
nal interference of the resonances arising from the detergent in the 
NMR analysis. The small signals deriving from residual unlabelled 
SDS were constant through all the samples, as the same amount of 
SDS was added to each well. Therefore, SDS does not interfere with 
NMR processing and multivariate analysis.

A legitimate question might arise regarding the relative con-
tribution of the intracellular metabolome to the NMR spectrum 
acquired on the well content, including both medium and the lysed 
cell metabolomes. To address this question we acquired NMR 
spectra on the entire content of the well (endo- and exo-metabo-
lomes), the exometabolome, the endometabolome and medium 
(Supplementary Fig. S4). The samples containing only the endome-
tabolome were prepared by extracting PBS-washed cells from one  
well using the combined SDS/ultrasonication method. As expected, 
the major NMR signals arose from the extracellular metabolites; 
however, several signals arising from the intracellular metabolites 
were detected (for example, glutamate, choline, phosphocholine 
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and so on). Similarly, in spectra acquired on samples containing 
both endo- and extracellular metabolomes, signals arising exclu-
sively from the endometabolome and not overlapping with other 
extracellular resonances were clearly identified (for example, phos-
phocholine and glycerophosphocholine; Supplementary Fig. S4).

To validate the robustness of the method across multiple 96-well 
plates, we applied PCA to 1H-NMR spectra acquired on samples 
seeded with either solvent control or l-asparaginase in randomized 
positions within one plate as well as in different plates. No plate-
to-plate variability was observed and further details are reported in 
Supplementary Fig. S5.

Metabolic changes induced by drug treatment in cell lines. To 
evaluate the sensitivity of this method for monitoring metabolic 
perturbations induced by a 24-h drug treatment, we compared 
the metabolic changes of both suspension (human leukaemia 
cells, CCRF-CEM) and adherent mammalian carcinoma cell lines 
(human ovarian cancer cells, SKOV-3) in response to different drug  

treatments (dexamethasone (Dex), rapamycin (Rap), dichloroacetate 
(DCA), vincristine (Vin) and three different doses of l-asparaginase 
(A1, 1 U ml − 1; A01, 0.1 U ml − 1; A001, 0.01 U ml − 1)). For each cell line, 
we compared spectra acquired using three different 1H NMR pulse 
sequences: One-dimensional (1-D) spectra (Fig. 2a), Carr-Purcell-
Meiboom-Gill (CPMG) spin echo (Fig. 2b) and two-dimensional 
(2-D) 1H J-resolved (JRES; included in Figure 2c as 1-D projec-
tions of 2-D JRES spectra, pJRES) sequences. The enlarged sections  
(0.7–1.1 and 6.6–7.5 p.p.m.) of 1H NMR spectra acquired on CCRF-
CEM cells using the aforementioned techniques, highlight the 
efficacy of relaxation-edited CPMG and pJRES pulse sequences in 
removing the residual broad signals from cell debris including mac-
romolecules (for example, proteins and lipoproteins). This enables 
identification and relative quantification of small metabolites in both 
the aliphatic and in the aromatic regions of the spectra (for example, 
valine, leucine, tyrosine) without the need of centrifugation steps. 
In addition, pJRES spectra provide proton-decoupled NMR spectra 
useful for reducing congestion and increasing metabolite specificity. 
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Figure 1 | Validation and workflow for NMR-based metabolomic drug screening. (a) The cells are seeded and treated in a 96-well plate. At the end of 
the 24 h treatment period, cells are lysed and their metabolism quenched by combined ultrasonication and by addition of sDs-d25. The content of the well 
is then transferred into a 3-mm nmR tube. To validate the quenching of any residual enzymatic activity, metabolic changes were monitored by nmR in 
live cells (b) and cells lysed and inactivated by addition of sDs-d25 and ultrasonication (c). 1-D nmR spectra were acquired every 30 min for a total of 8 h. 
(d) 1H-nmR spectra showing the metabolomic perturbations induced in CCRF-CEm cells after 24 h of drug treatment ((Dex, Rap, DCA, Vin) and three 
different doses of asparaginase (A1, 1 u ml − 1; A01, 0.1 u ml − 1; A001, 0.01 u ml − 1)). overlay of six replicate spectra (1.3–4 p.p.m. section) per treatment 
condition (with and without DCA treatment) highlights the degree of reproducibility. The metabolic changes detected determine a good separation 
between the different treatment groups, as shown in the 3-D scores plots (e), obtained from the PCA of the CPmG nmR spectra. Each treatment group 
is colour-coded according to the multivariate Z-factor value (colour bar) obtained by the pairwise PCA comparison of each drug treatment versus solvent 
control (Dex (Z = 0.15), DCA (Z = 0.91), Rap (Z = 0.74), Vin (Z =  − 1.97), A1 (Z = 0.91), A01 (Z = 0.86), A001 (Z = 0.84)). (f) PCA loadings plot and the 
superimposed Zbin-values identify both the contribution and the Z-factor values of every bin of nmR spectra from the comparison of control and DCA 
intervention. (Lac, lactate; Ala, alanine; Pro, proline; Glu, glutamate; Pyr, pyruvate; Gln, glutamine; Asp, aspartate; Asn, asparagine; orn, ornithine;  
Cho, choline; PCho, phosphocholine).
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Similar groupings and separation among all the eight treatments (six 
replicates per treatment) were observed comparing the PCA scores 
plots (PC1 and PC3) of CCRF-CEM leukaemia cells of 1D (Fig. 2d) 
and CPMG spectra (Fig. 2e). The PCA scores plots (PC1 and PC2), 
obtained using JRES pulse sequence (Fig. 2f), show an excellent sep-
aration and superior groupings for all the treatments compared with 
the scores plots using the other two techniques.

We also performed pairwise PCAs comparing each of the drug 
treatments to the control samples. The percent variability obtained 
from these analyses (PC1 and PC2) and the multivariate Z-factor 
(Supplementary Methods) values (Supplementary Table S2) show 
again the benefits of JRES in particular for Dex and Vin drug treat-
ments. These differences of JRES can be in part attributed to a smaller 
number of variables, due not only to simplification of the spectra by 
decoupling of the multiplets but also to the reduced sensitivity, due 
to smaller number of scans in direct dimension, compared with 1-D 
and CPMG techniques.

The loadings plot (Fig. 1e) indicates the weighting to the first 
component of the PCA score plot (Fig. 1d) of different spectral 
bins; in a similar manner, we have introduced Z-factor values at 
each bin of the NMR spectra (Supplementary Methods). The Zbin-
values, superimposed to the loadings plots for each comparison  
of control and individual drug intervention (Fig. 1e), indicate  
that treatment with DCA-induced relevant metabolic changes  
(for example, pyruvate, glutamate, lactate) characterized by Zbin-
factor values greater than 0.2 satisfying the requirements for a 
high-throughput assay15.

To test the general applicability of high-content NMR-based 
metabolomic screening, we delivered the same drug treatments 
administered to non-adherent CCRF-CEM cells to the adherent 
ovarian SKOV-3 cells, a more drug-resistant mammalian cell line. 
As expected, the responses to drugs treatments in SKOV-3 cells 
were less pronounced compared with CCRF-CEM cells, as indicated  
by the smaller percent variation of the first and second principal 
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Figure 2 | Comparison of different NMR pulse sequences. Full spectra and expanded sections (07–1.1 and 6.6–7.5 p.p.m.) of 1H nmR spectra acquired 
using (a) 1-D 1H nmR, (b) CPmG spin-echo pulse sequence and (c) by projecting the acquired 2-D JREs (pJREs). spectra were acquired on CCRF-CEm 
leukaemia cells treated with solvent control (Control), Dex (50 nm), DCA (20 mm), RAP (100 nm) Vin (1 nm) and asparaginase at three different doses 
(A1, 1 u ml − 1; A01, 0.1 u ml − 1; A001, 0.01 u ml − 1) following cell lysis and metabolism inactivation via addition of sDs and ultrasonication. The spectra 
acquired using the aforementioned pulse sequences show important alterations on the resonance intensities of selected metabolites (Ile, isoleucine; Leu, 
leucine; Val, valine; Tyr, tyrosine, His histidine; Phe, phenylalanine) as highlighted by the PCA scores plots obtained from analysis of spectra acquired 
using (d) 1-D (PC1 versus PC3), (e) CPmG (PC1 versus PC3) and (f) JREs pulse sequences (PC1 versus PC2) on CCRF-CEm cells with and without drug 
treatments.
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components (Fig. 3a). However, the observed metabolic variations 
(Fig. 3a) support the applicability of this approach also to drug 
resistant and adherent cell lines.

We believe that the applicability of high-content NMR-based 
metabolomic screening might be extended also to other types of 
intervention such as miRs treatments. Indeed, the extent of the 
metabolic responses in human cell lines following transfection of 
miRs is not known16. Therefore, we tested whether the sensitivity of 
our HCS method was sufficient to detect metabolic changes in HeLa 
cells transfected with mir-121 and mir-16. We used premiRs as neg-
ative controls, which are chemically modified double-stranded RNA 
molecules designed to mimic endogenous miR molecules (Supple-
mentary Methods). These miRs were selected because they were 
computationally predicted to target multiple metabolic enzymes. 
We found that the developed method was capable of detecting met-
abolic perturbation induced by miRs treatments as observed by the 
PCA scores plots (PC1 and PC2) and the multivariate Z-factor val-
ues (Fig. 3b). More specifically, mir-16 induced a more pronounced 
metabolomic alteration on HeLa cells compared with mir-121.

Metabolomic NMR-based drug screening in acute myeloid leu-
kaemia (AML) primary cells. Owing to the small amount of cells 
required for our high-throughput metabolomic screening method, 
we believe that this procedure could be valuable to study the response 
to treatment in primary cells, while avoiding phenotypic changes 
induced by growth in culture. Cells isolated from bone marrow 
specimens of an untreated AML patient were treated for 24 h with 
Rap and l-asparaginase at different doses. Following treatment, the 
samples were prepared for the NMR analysis as detailed above.

To emphasize the metabolic changes in the primary cell samples 
after the 24 h of treatment, we subtracted the NMR spectra acquired 
on unconditioned medium (incubated without cells in the same 
96-well plate; Fig. 1a) from those acquired on AML primary cells 
with and without drug intervention (for example, l-asparaginase 
1 U ml − 1, Fig. 4a). The difference spectra clearly indicated distinct 
changes in the metabolome of primary cells, including changes 
in isoleucine, alanine and ornithine. An unsupervised multivari-
ate analysis was then performed on the acquired 1H NMR spectra  

(Fig. 4b). PCA scores plots (PC1 and PC2) and related multivariate 
Z-factor values for Rap (Z =  − 0.90), A1 (Z = 0.83), A01 (Z = 0.77) 
and A001 (Z = 0.42) confirm that different responses of primary cells 
to the drug treatments are detected (Fig. 4b). The overall response 
of AML primary cells to treatment was limited for Rap treatment 
(as observed from the negative multivariate Z-factor values), and 
increasingly more pronounced following treatment with increasing 
doses of l-asparaginase. In addition, for Rap treatment few meta-
bolic changes (for example, pyruvate and glucose) had Zbin-factor 
values greater than 0.5 (Fig. 4c). This point-by-point analysis of  
Z-values for the l-asparaginase treatment indicated that besides the 
metabolites directly affected by the enzymatic activity of l-aspara-
ginase (that is, asparagine and glutamine17,18), other compounds, 
including glucose, lactate, alanine and methionine, were affected by 
this drug intervention (Fig. 4d).
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ornithine; Lys, lysine; Cho, choline; Gly, glycine.
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Figure 4 | High-content NMR-based metabolomic screening in adherent 
cell lines. PCA scores plots (PC1 versus PC2) obtained from the analysis of 
the 1H-nmR spectra of (a) human ovarian carcinoma cell line (sKoV-3)  
after 24 h of treatment with different types of drugs and (b) human 
epithelial carcinoma cell lines (HeLa) after 24 h of miRs (miR-16 and miR-
121) treatment. Each treatment-group on the PCA scores plots is colour-
coded according to the multivariate Z-factor value (colour bar) obtained 
from the pairwise PCA comparison of treatment versus control for sKoV-3 
(Dex (Z =  − 5.83), DCA (Z = 0.45), Rap (Z =  − 3.07), Vin (Z =  − 1.84 ), A1 
(Z = 0.70), A01 (Z = 0.01), A001 (Z = 0.24)) and HeLa (mir-16 (Z = 0.34) 
and mir-121 (Z =  − 0.55)) cell lines.
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High-content NMR-based metabolomic screening of KI library. 
Protein kinases control a wide range of cellular processes including 
cell metabolism19,20. Therefore, monitoring cell metabolism during 
treatment is extremely valuable to investigate the cellular response 
and treatment efficacy, in particular, as an evaluation criterion com-
plimentary to standard screening methods. As a first application, 
here we applied the high-content NMR-based metabolomic screen-
ing combined with the ATP assay to monitor the cellular metabo-
lomic response for a library of KIs (Supplementary Table S4).

We first used the ATP bioluminescence measurements to inves-
tigate changes in CCRF-CEM cell viability following treatment 
with approximately 250 KIs at 24 and 72 h. We then selected 56 
KIs based on ATP values showing very low to moderate changes. 
Compounds causing very pronounced changes in viability after 
24 h were excluded. Cell viability measurements (Fig. 5a) and the 
NMR-based metabolomic screening were performed after 24 h  
of treatment with 56 KIs in CCRF-CEM cells (in triplicates). We  
calculated the multivariate Z-factor for each KI treatment  
(Fig. 5b), and for a subset of metabolites we determined the Zbin-values  
(Fig. 5c) and their relative concentration (as a percent of control;  
Fig. 5d). Several metabolic changes induced by the drugs were 
clearly correlated (Supplementary Figure S6).

To confirm some of the hits of the first metabolomic screen (Fig. 5),  
nine KIs were chosen for a secondary screen (Supplementary  

Figs S7–S9). Four of the repeated compounds were selected because 
of the action on a well-known clinical phenotype, the lactate/
pyruvate ratio (Fig. 6a–d). Five more compounds were chosen to 
provide additional data on measurement reproducibility. The results 
of the second screen (Supplementary Fig. S7a,b) were consistent with 
the first assay and the average coefficient of variation in metabolite 
changes between the two screens was 0.09 ± 0.01 (mean ± s.e.m.). 
Most of the metabolites showed comparable changes in the two 
screenings (Supplementary Fig. S7c,d). The second screen was also 
performed on CCRF-CEM cells treated using a 10-fold lower dose 
of KIs (0.1 µM; Supplementary Fig. S8). Most low-dose treatments 
did not affect the ATP cell viability; however significant metabolic 
alterations were observed for some treatments (for example, BIM-
00866768 and BIM-0086776; Supplementary Fig. S8). To confirm 
the observed results, hit follow-up dose–response experiments were 
performed using six different concentrations21 of KI in the range 
of 0.05–2 µM (Supplementary Fig. S9). These concentrations were 
chosen with the intent of investigating the metabolomic response 
of CCRF-CEM cells to KI treatment without affecting their cell bio-
mass. IC50 values were calculated based on the 50% reduction of 
ATP levels induced by treatment (Supplementary Table S5).

Four of the nine KIs considered above were then chosen, select-
ing the compounds inducing moderate ATP level drops to prevent  
relevant changes in cell biomass. These four KIs reproduc-
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Figure 5 | NMR-based metabolomic screening of a library of KIs. (a) ATP assay was used to measure the cell viability of CCRF-CEm cells following 24 h 
of treatment with 56 KIs (1–56 BIm). The final concentration of each drug treatment was 1 µm. The mean luminescence values of cells treated with KI 
were normalized to the average ATP value for untreated cells (solvent control). (b) Principal component analysis was performed on the 1H nmR spectra 
acquired in triplicates and a multivariate Z-factor value was calculated for each KI. For a subset of all the observed metabolites we determined the  
Zbin-values (c) and their relative concentration (d, as percent of control).
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ibly affected the relative concentrations of lactate and pyruvate in 
opposite directions (Figs 5 and 6; Supplementary Figs S7–S9). An 
eEF-2 KI (BIM-0207152), and a NF-κB activation inhibitor (BIM-
0086776) increased lactate/pyruvate ratio (Fig. 6d), whereas an MK2 
inhibitor (BIM-0086775), and an inhibitor of PKA, PKC and PKG 
(BIM-0086768) induced a decrease. Concurrently, mild and compa-
rable effects on ATP levels were observed, consistent with reduced 

cell proliferation (Fig. 6a). Moreover, these inhibitors were not  
identical in their action in fact engendered distinct metabolic 
changes, including glucose, alanine, serine, choline and glutamine 
(Fig. 6b). Multivariate statistical analysis (Fig. 6c) indicates that BIM-
0207152 and BIM-0086776 induced similar alterations in cellular 
metabolic profiles, different from those induced by BIM-0086775 
and BIM-0086768, and distinct from untreated controls. The two 
inhibitors (BIM-0207152 and BIM-0085776) that induce similar 
metabolic modulations in CCRF-CEM cells (Fig. 6) also show simi-
lar responses in cell survival of primary cells from acute leukaemia 
patients. Preliminary results from four leukaemia patients indeed 
showed a high correlation in the individual response between these 
two drugs after 24 h in culture (Supplementary Fig. S10).

Discussion
Cultured cell lines are well-established models for the study of 
cancer22–24. Despite the numerous in vitro and ex vivo studies, a 
high-content metabolomic assay for screening drug libraries using 
mammalian cells has not been reported. The methodology devel-
oped in this work describes an innovative approach using NMR-
based metabolomics for drug screening. The rationale for using 
NMR as the platform of choice was dictated by the ability of this 
analytical technique to handle samples containing complex and 
relatively unrefined mixtures of compounds. More specifically, the 
samples considered in this study required only minimal sample 
preparation without the need of additional separation or filtration 
step (for example, proteins removal). Furthermore advantageous are 
the low experimental variability and reasonable cost per sample.

The main drawback associated with the use of NMR is the rela-
tively limited number of compounds that can be detected. Owing 
to this limitation, our metabolomic HCS method do not provide 
metabolic profiles as those described by us and others using more 
in-depth metabolomic techniques8,11,21,22,25–28. Nevertheless, the assay 
we describe is suitable for a high-throughput primary screen, and 
should be followed, as it is commonly the case, by secondary assays 
analysing the exo- and endo-metabolomes of selected hits likely 
using a combination of different analytical platforms8,11,21,22,25–28. 
Other techniques including turbulent flow chromatography inter-
faced with MS might represent a valid tool for a metabolomic 
screening capable of increasing the number of identified metabo-
lites compared with NMR techniques29, with additional sample 
preparation steps.

Although not comprehensive of all metabolites, the wealth of 
information obtained from the multivariate metabolic readout is 
of great advantage for drug screening purposes. In fact, although 
most primary drug screens on mammalian cells are based on single 
readout, high-content metabolomic screening allows the parallel 
measurements of an array of metabolites and is designed to provide 
additional valuable information and criteria for the selection of the 
most effective individual or combinatorial drug interventions.

To allow the rapid preparation and metabolomic screening of 
hundreds of samples, we validated a novel protocol for lysing the 
cells and immediately quenching cellular metabolism, using SDS, a 
powerful denaturating detergent widely used in protein biochem-
istry30, and in micelle-assisted diffusion-ordered spectroscopy 
for stereoisomer resolution31. The content of a single well from a 
96-well plate was used for the assay without the need of pooling 
the content of several wells, enabling maximized yield per plate. 
Moreover, the sensitivity of our high-content metabolomic screen-
ing method was proven adequate to monitor metabolic perturba-
tions induced by drug intervention in both cultured cell lines and 
in AML primary cells as well as following treatment with miRs. 
The metabolomic study of miRs could potentially be extended to 
the entire set all known human miRs (around 500), and there-
fore contribute to the understanding of this complex intracellular  
regulatory system.
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Figure 6 | Metabolic modulation induced in CCRF-CEM cells by four 
KI hits. Four KIs found to cause similar drop (by ~20%) of ATP values 
in CCRF-CEm cells selected. The drugs eEF-2 KI (BIm-0207152), mK2 
inhibitor (BIm-0086775) and an inhibitor of PKA, PKC and PKG (BIm-
0086768) were administered at the high dose (1 µm), and nF-KB 
activation inhibitor (BIm-0086776) at low dose (0.1 µm). (a) ATP assay 
(as % of control) following KI treatments is reported as the mean values 
(bars)  ± s.e.m. (error bars; N = 3). (b) Representative sections of average 1H 
nmR spectra acquired on CCRF-CEm cells with and without KI treatment 
are expanded (Gln, glutamine; Pyr, pyruvate; Glu, glutamate; Cho, choline; 
Gluc, glucose; Gly, glycine; myo-in, myo-inositol). (c) Principal component 
analysis (PC1 versus PC2) was performed on the 1H nmR spectra of 
treated and untreated CCRF-CEm cells acquired in triplicates. (d) Relative 
concentrations of lactate and pyruvate calculated as percent of control are 
reported as the mean values (bars) ± s.e.m. (error bars; N = 3). statistical 
comparison between data obtained from untreated and KIs treatment 
was performed using an unpaired student’s t-test (statistical significance:  
**P < 0.01 and ***P < 0.001).
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Altogether, using our approach, hundreds of samples can meta-
bolically be inactivated in ~5 min and a metabolomic screening of 
around 100 samples can be performed in 24 h. Progress in NMR 
spectroscopy, for example, in probe hardware design, will increase 
the sensitivity of this method and allow the applicability to volumes 
obtained from higher density plates (for example, 384-well plates). 
In particular, the relatively new area of microprobe and multiple 
coil probeheads shows great promises for high-throughput NMR 
experiments32. In the area of NMR data processing, continuous 
efforts are devoted to the development of new algorithms for reduc-
ing multiple readout parameters and automating identification and 
quantification of metabolites33. Here we capitalized on NMR pulse 
sequences (CPMG and JRES), which warrant highly reproducible 
analyses of small molecules even in the presence of residual proteins 
or cell debris in the sample. Multivariate Z-factor values derived 
from PCA were used to evaluate the quality of the NMR-based 
metabolomic screening assay. Furthermore, because NMR spectra 
produce arrays of complex data (as opposed to a single outcome), 
we also introduced the Zbin-value as a localized parameter assessing 
the effect of drug treatment on each metabolite.

Since the development of imatinib (known as CGP 57148  
(ref. 34) and subsequent application for treatment of chronic 
myeloid leukaemia, KIs have received increasing attention as anti-
cancer drugs. Activation of oncogenic pathways including PI3K/
AKT/mTOR, involved with altered bioenergetic pathways, such 
as glycolysis, fatty acid and glutamine metabolisms, has suggested 
novel targets for cancer treatment23,24,27,35,36. Therefore, monitoring 
cell metabolism during treatment is extremely valuable to investi-
gate cellular response and treatment efficacy. Here we screened a 
library of KIs and shown different metabolic adaptations following 
24 h of treatment. Metabolomic data showed that inhibitors could 
modulate metabolic substrates uptake and product excretion in the 
presence of similar ATP levels. In our first application, we focused 
on four KIs that can change the lactate/pyruvate ratio, an important 
and clinically validated measure of the intracellular redox potential 
and of cellular respiration37,38. The lactate/pyruvate ratio is a poten-
tial therapeutic target relevant not only to hypoxic and ischaemic 
disease but also to many other pathologies, including genetic mito-
chondrial diseases37,38. The focus on compounds functioning on this 
important parameters emerged after the first screen, demonstrating 
one advantage (hypothesis generation) of the metabolomic method 
we describe as compared with drug screens based on the measure-
ment of one or two metabolites.

There are many other possible applications of this method, for 
example lactate production and substrate utilization in cancer 
versus non-cancer cells24,36 or gluconeogenesis from different sub-
strates in hepatocytes, relevant to diabetes39,40. Importantly, because 
the measurements are performed within a global metabolic profile, 
they can also provide a series of compounds with partially different 
mechanisms of actions, which can be explored for potential syner-
gies41–44.

Because the inhibitors we used have known targets, the screen 
can also be used to generate hypotheses about metabolic relevant 
signal transduction mechanisms. For example, the two most closely 
related KIs (Fig. 4c) target eEF-2 kinase45 and NF-kB46. In addition, 
eEF-2 kinase has been linked to other metabolically relevant path-
ways and to the autophagic process47. These relationships can be fol-
lowed up experimentally, with the caveat that we might not know all 
the targets of the inhibitors we have used.

We believe that this NMR-based assay might find an immedi-
ate relevant application for screening a large number of individual 
or combinatorial drug interventions reducing the number of pos-
sible drugs to be studied more in detail. In addition, it might find an 
immediate relevant application into clinical studies. The possibility 
of using cells directly taken from patients might open new routes for 
the development of personalized drug treatment48,49.

Methods
Primary AML cells and cell lines. Bone marrow specimens from untreated AML 
and lymphoblastic leukaemia patients were obtained from the Rady Children’s hos-
pital. Informed consent was obtained from all patients involved and study was per-
formed in accordance with the Institutional Review Board guidelines. Within 6 h 
after sampling, mononuclear cells were isolated by Ficoll-paque (GE Healthcare) 
density gradient centrifugation (1.077 g cm − 3) at 400 g for 30 min followed by three 
washes in PBS. Isolated mononuclear cells were allowed to adhere to the 96-well 
plate overnight in RPMI 1640 medium (HyClone). Non-adherent mononuclear 
cells were collected to enrich lymphocyte population.

CCRF-CEM and SKOV-3 cell lines were maintained in exponential prolifera-
tion in RPMI 1640 medium (HyClone), whereas HeLa cells were grown in DMEM 
(HyClone). Both media were supplemented with 10% FBS (HyClone), 1% 200 mM 
l-glutamine (Omega) and 1% penicillin/streptomycin (Omega). The cells were 
cultured in a humidified chamber at 37 °C with 5% CO2.

Isolated non-adherent mononuclear, CCRF-CEM, SKOV-3 and HeLa cells were 
seeded in 96-well plates (Greiner Bio One) at the density of 3×105, 1×105, 3×104, 
1.5×104 cells per well, respectively, and allowed to adapt/attach for 6 h before treat-
ment. Doubling time was 24, 48 and 24 h for CCRF-CEM, SKOV-3 and HeLa cells, 
respectively.

For each cell type, the number of cells seeded per well was determined using 
a luminescent ATP-detection assay (Perkin Elmer; Supplementary Methods) such 
that the cells remained in their linear range of growth and the maximum number 
of cells per well was obtained 30 h after seeding (accounting for 6 h of adaptation 
and 24 h of treatment).

Drug treatments. Both CCRF-CEM and SKOV-3 cells were treated for 24 h with 
the following drugs: DCA (20 µM; Sigma-Aldrich), Dex (50 nM, Calbiochem), 
Rap (100 nM; Sigma-Aldrich), Vin (1 nM; Sigma-Aldrich) and three different con-
centrations of l-asparaginase (0.01, 0.1, 1 U ml − 1; BioVendor Inc.). An untreated 
control group (solvent control) was also included in all the assays. All the drug 
treatments were performed in six replicates per condition. No alterations in cell 
numbers were observed following 24 h of drug treatment. To reduce bias, the treat-
ments were administered based on a randomized list of well positions.

Sample preparation for HCS experiments. The cells of interest were seeded  
in a 96-well plate with 200 µl of appropriate medium. A total volume of 10 µl of  
SDS was added to the culture medium via a multichannel electronic pipette.  
The final concentration of SDS in each well was 0.5% w/v, unless otherwise noted 
(all experiments with the exception of the optimization procedure detailed below). 
Immediately after addition of SDS, the 96-well plates were sealed and sonicated 
in an ice-cold ultrasonicating water bath for 5 min. The water bath temperature 
at the beginning of sonication was 4 °C and during sonication never exceeded 
6 °C. At the end of sonication 160 µl was transferred from each well into a 3-mm 
NMR tube (Norell) containing TMSP-d4 (Cambridge Isotope Laboratories; final 
concentration 0.5 mM), phosphate buffer (final concentration 100 mM) and 10% 
of D2O (Cambridge Isotope Laboratories) to obtain a total volume of 200 µl. The 
overall time between dispensing SDS to the 96-well plate and sonicating the entire 
content of the well for lysing the cells and quenching their enzymatic activity was 
approximately 5 min.

NMR experiments. One-dimensional standard 1H NMR and CPMG and 2-D  
1H JRES spectra were acquired on 500-MHz Bruker and 600-MHz Bruker Avance 
equipped with a TCI cryoprobe spectrometers (Bruker BioSpin Corp.), both 
equipped with an autosampler at 30 °C50–52. All the pulse sequences were imple-
mented with excitation sculpting to suppress the water signal53. One-dimensional 
and CPMG spectra were acquired using a 90° flip angle, 6 kHz spectral width, 
relaxation delay of 1 s, 16k data points, 8 dummy scans and 256 or 512 transients 
(approximately 15 or 30 min of acquisition per sample). Spin-spin relaxation 
delay of CPMG was set to 100 ms. Double spin-echo sequence suppressing strong 
coupling artifacts was used to acquire 2-D JRES spectra52. Thirty-two increments 
were recorded in the indirect dimension using 16 transients per increment, 16k 
data points with 8 dummy scans and a recycle delay of 2 s; spectral widths of 6 kHz 
and 50 Hz were set in direct and indirect dimension, respectively, (~45 min of 
acquisition per sample).

Before Fourier transformation, 1-D and CPMG spectra were zero-filled 
and processed by multiplying the free induction decay by an exponential line 
broadening function of 0.5 Hz. Before Fourier transformation, 2-D JRES spectra 
were zero-filled in both dimensions, and apodization using combined sine-
bell/exponential window function in the direct dimension and by a sine-bell 
function in the incremented dimension has been applied54. Following Fourier 
transformation, the magnitude mode spectra were tilted by 45°, symmetrized and 
skyline projected (pJRES). All the NMR data sets were processed using NMRLab55 
in the MATLAB programming environment (MathWorks, Inc.). Post processing 
of NMR spectra included scaling according to the probabilistic quotient method56, 
alignment, exclusion of selected signals arising from solvents, TMSP and DCA, 
binning at 0.005 p.p.m., and application of a generalized log transformation57. NMR 
resonances of metabolites were assigned using the Chenomx NMR Suite (version 
6.0; Chenomx Inc.) and other available libraries58,59.
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Optimization and validation of metabolomics HCS method. To optimize the 
amount of SDS required to completely quench cell metabolism we monitored 
residual cell viability and metabolic activity in samples prepared without or with 
various amounts of SDS. Ten different concentration of SDS were considered 
ranging between 0.01 and 2% w/v (final concentration per well). Cellular viability 
and residual metabolism were monitored using both ATPlite assay (Supplementary 
Methods) and cell count (Countess automated cell counter, Invitrogen) measure-
ments in samples prepared using ultrasonication and with and without the addition 
of SDS. All the measurements were performed with six replicates per condition.

Furthermore, to check for residual metabolism, a series of 1-D NMR spectra 
were collected every 30 min over a period of 8 h for live CCRF-CEM cells, cell lysed 
using only ultrasonication and cells simultaneously lysed and SDS inactivated. Sub-
sequent multivariate analysis (PCA) was performed on 16 spectra per condition. 
For these experiments, the NMR spectra were acquired at 37 °C to maintain more 
suitable conditions for live cells.

To further validate the sample preparation method developed and assess a pos-
sible metabolomic bias arising from plate-to-plate variability, we acquired 1-D 1H-
NMR spectra of six wells per plate and per treatment condition over five different 
plates (in total 60 1H-NMR spectra, 30 replicates per condition) for CCRF-CEM 
cells with and without 1 U ml − 1 l-asparaginase treatment.

Screening of KIs library. Fifty-six KIs from the 384-well protein KI library I 
(InhibitorSelect, EMD Chemicals Inc.; Supplementary Table S4) were dissolved in 
dimethylsulphoxide, administered to CCRF-CEM cells at 1 µM (final concentra-
tion) for 24 h and luminescence and NMR experiments were performed at least in 
triplicates. NMR spectra of the medium, containing solvent control and incubated 
with and without the cells in the same 96-well plate, were acquired in triplicates. To 
confirm initial hits, nine KIs were chosen, and ATP assay and NMR experiments 
were acquired for three or more independent repeats on CCRF-CEM cells follow-
ing 24 h of treatment of KI at two different doses. For every plate, NMR spectra of 
two different controls, cells receiving solvent control and media incubated in the 
same 96-well plate without the cells but containing solvent control were acquired 
as well. The drugs were eEF-2 KI (BIM-0207152), 5-iodo-indirubin-3′-monoxime 
(BIM-0207163), MK2a inhibitor (BIM-0086775), ERK inhibitor II (BIM-0086749), 
PKC inhibitor (BIM-0050229), K-252a, Nocardiopsis sp. (BIM-0086768), Fascap-
lysin, Synthetic (BIM-0086751), Wee1 inhibitor II (BIM-0207209) and NF-KB 
activation inhibitor (BIM-0086776) all administered at 1 µM (high dose) and 
0.1 µM (low dose). Hit follow-up studies were performed using dose–response 
experiments for the abovementioned nine KIs. Dose–response experiments were 
performed treating CCRF-CEM cells using six different clinically relevant concen-
trations of KI in the range of 0.05–2 µM. The intent of our study was to investigate 
the metabolomic response to KI treatment without affecting the cell biomass. IC50 
values were calculated (Supplementary Table S4) based on the 50% reduction of 
ATP levels induced by treatment. No alterations in cell numbers were observed 
after 24 h induced by KI treatments.

Statistical and chemometric analysis. After processing, NMR spectra were 
mean-centered and then subjected to PCA60 using MATLAB. Multivariate Z-factor 
values were calculated as indicated in Supplementary Equations S1-S2 (refs 13,15; 
Supplementary Methods).

The relative concentrations of selected metabolites (as percent of control) are 
reported as mean values ± s.e.m Statistical comparison between data obtained from 
untreated and individual KIs treatment was performed using an unpaired Student’s 
t-test (statistical significance: *P < 0.05, **P < 0.01 and ***P < 0.001). 
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