Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The increasing rate of global mean sea-level rise during 1993–2014

Abstract

Global mean sea level (GMSL) has been rising at a faster rate during the satellite altimetry period (1993–2014) than previous decades, and is expected to accelerate further over the coming century1. However, the accelerations observed over century and longer periods2 have not been clearly detected in altimeter data spanning the past two decades3,4,5. Here we show that the rise, from the sum of all observed contributions to GMSL, increases from 2.2 ± 0.3 mm yr−1 in 1993 to 3.3 ± 0.3 mm yr−1 in 2014. This is in approximate agreement with observed increase in GMSL rise, 2.4 ± 0.2 mm yr−1 (1993) to 2.9 ± 0.3 mm yr−1 (2014), from satellite observations that have been adjusted for small systematic drift, particularly affecting the first decade of satellite observations6. The mass contributions to GMSL increase from about 50% in 1993 to 70% in 2014 with the largest, and statistically significant, increase coming from the contribution from the Greenland ice sheet, which is less than 5% of the GMSL rate during 1993 but more than 25% during 2014. The suggested acceleration and improved closure of the sea-level budget highlights the importance and urgency of mitigating climate change and formulating coastal adaption plans to mitigate the impacts of ongoing sea-level rise.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global mean sea level (GMSL).
Figure 2: Global mean steric sea level (GMSSL).
Figure 3: Global mean ocean mass change.
Figure 4: Instantaneous closure of the global mean sea-level budget.

Similar content being viewed by others

References

  1. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13, 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Jevrejeva, S., Moore, J. C., Grinsted, A. & Woodworth, P. L. Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 35, L08715 (2008).

    Article  Google Scholar 

  3. Cazenave, A. et al. The rate of sea-level rise. Nat. Clim. Change 4, 358–361 (2014).

    Article  Google Scholar 

  4. Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

    Article  Google Scholar 

  5. Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res. 113, http://dx.doi.org/10.1029/2007jc004517 (2008).

  6. Watson, C. S. et al. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 5, 565–568 (2015).

    Article  Google Scholar 

  7. Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    Article  CAS  Google Scholar 

  8. Ezer, T., Atkinson, L. P., Corlett, W. B. & Blanco, J. L. Gulf Stream’s induced sea level rise and variability along the US mid-Atlantic coast. J. Geophys. Res. 118, 685–697 (2013).

    Article  Google Scholar 

  9. Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article  CAS  Google Scholar 

  10. Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Wat. Resour. Res. 50, 5698–5720 (2014).

    Article  Google Scholar 

  11. Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012).

    Article  Google Scholar 

  12. Wu, Z., Huang, N. E., Long, S. R. & Peng, C. K. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl Acad. Sci. USA 104, 14889–14894 (2007).

    Article  CAS  Google Scholar 

  13. Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009).

    Article  Google Scholar 

  14. Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998).

    Article  Google Scholar 

  15. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Google Scholar 

  16. Llovel, W. et al. Terrestrial waters and sea level variations on interannual time scale. Glob. Planet. Change 75, 76–82 (2011).

    Article  Google Scholar 

  17. Yi, S., Sun, W., Heki, K. & Qian, A. An increase in the rate of global mean sea level rise since 2010. Geophys. Res. Lett. 42, 3998–4006 (2015).

    Article  Google Scholar 

  18. Chen, X. & Wallace, J. M. ENSO-like variability: 1900–2013. J. Clim. 28, 9623–9641 (2015).

    Article  Google Scholar 

  19. Storto, A. et al. Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Clim. Dynam. http://dx.doi.org/10.1007/s00382-015-2554-9 (2015).

  20. Xue, Y. et al. A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J. Clim. 25, 6905–6929 (2012).

    Article  Google Scholar 

  21. Trenberth, K. E. & Fasullo, J. T. Tracking Earth’s energy. Science 328, 316–317 (2010).

    Article  CAS  Google Scholar 

  22. Harig, C. & Simons, F. J. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth Planet. Sci. Lett. 415, 134–141 (2015).

    Article  CAS  Google Scholar 

  23. Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

    Article  Google Scholar 

  24. Milly, P. C. D., Cazenave, A. & Gennero, M. C. Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc. Natl Acad. Sci. USA 100, 13158–13161 (2003).

    Article  CAS  Google Scholar 

  25. Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

    Article  CAS  Google Scholar 

  26. Cazenave, A., Lombard, A. & Llovel, W. Present-day sea level rise: a synthesis. C. R. Geosci. 340, 761–770 (2008).

    Article  Google Scholar 

  27. IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  28. Church, J. A., White, N. J. & Arblaster, J. M. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438, 74–77 (2005).

    Article  CAS  Google Scholar 

  29. Gregory, J. M. Long-term effect of volcanic forcing on ocean heat content. Geophys. Res. Lett. 37, L22701 (2010).

    Article  Google Scholar 

  30. Fasullo, J. T., Nerem, R. S. & Hamlington, B. Is the detection of accelerated sea level rise imminent? Sci. Rep. 6, 31245 (2016).

    Article  CAS  Google Scholar 

  31. King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012).

    Article  CAS  Google Scholar 

  32. Huang, N. E. & Wu, Z. A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46, RG2006 (2008).

    Article  Google Scholar 

  33. Ezer, T. & Corlett, W. B. Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys. Res. Lett. 39, http://dx.doi.org/10.1029/2012gl053435 (2012).

    Article  Google Scholar 

  34. Wdowinski, S., Bray, R., Kirtman, B. P. & Wu, Z. Increasing flooding hazard in coastal communities due to rising sea level: case study of Miami Beach, Florida. Ocean Coast. Manage. 126, 1–8 (2016).

    Article  Google Scholar 

  35. Chen, X., Feng, Y. & Huang, N. E. Global sea level trend during 1993–2012. Glob. Planet. Change 112, 26–32 (2014).

    Article  Google Scholar 

  36. Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dynam. 37, 759–773 (2011).

    Article  Google Scholar 

  37. Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).

    Article  Google Scholar 

  38. Niedzielski, T. & Kosek, W. Forecasting sea level anomalies from TOPEX/Poseidon and Jason-1 satellite altimetry. J. Geodesy 83, 469–476 (2009).

    Google Scholar 

  39. Niedzielski, T. & Kosek, W. Minimum time span of TOPEX/Poseidon, Jason-1 and Jason-2 global altimeter data to detect a significant trend and acceleration in sea level change. Adv. Space Res. 47, 1248–1255 (2011).

    Article  CAS  Google Scholar 

  40. Santer, B. D. et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res. 105, 7337–7356 (2000).

    Article  Google Scholar 

  41. Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).

    Article  CAS  Google Scholar 

  42. Ezer, T., Haigh, I. D. & Woodworth, P. L. Nonlinear sea-level trends and long-term variability on Western European Coasts. J. Coast. Res. 744–755 (2016).

    Article  Google Scholar 

  43. Chambers, D. P. Evaluation of empirical mode decomposition for quantifying multi-decadal variations and acceleration in sea level records. Nonlinear Proc. Geophys. 22, 157–166 (2015).

    Article  Google Scholar 

  44. Visser, H., Dangendorf, S. & Petersen, A. C. A review of trend models applied to sea level data with reference to the ‘acceleration-deceleration debate’. J. Geophys. Res. 120, 3873–3895 (2015).

    Article  Google Scholar 

  45. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The work was done while X.C. visited CSIRO Oceans and Atmosphere (Hobart, Australia) as a CSIRO—Chinese Ministry of Education visiting scholar, sponsored by the China Scholarship Council. The authors thank A. B. A. Slangen for her useful comments and assistance with data sets. X.C. was supported by the National Key Basic Research Program of China under Grant 2015CB953900 and the Natural Science Foundation of China under Grant 41521091 and 41330960. The altimeter calibration and validation was supported by the Australian Integrated Marine Observing System (IMOS)—IMOS is a national collaborative research infrastructure, supported by the Australian Government. J.A.C., X.Z., D.M. and B.L. were supported by the Australian Climate Change Science Program (ACCSP) and National Environmental Science Programme (NESP). M.A.K. was supported by an Australian Research Council Future Fellowship (Project ID FT110100207).

Author information

Authors and Affiliations

Authors

Contributions

X.C., X.Z. and J.A.C. undertook the analysis of global sea-level budget and led the drafting of this manuscript. X.C. carried out the EEMD analysis and produced all figures. M.A.K. and C.S.W. undertook the adjustment of satellite altimeter data. X.Z. processed steric sea-level data sets; D.M. and B.L. processed the altimeter and terrestrial water storage data sets. C.H. processed the Greenland and Antarctic ice sheet data sets. All authors contributed significantly to the drafting and revision of this manuscript.

Corresponding authors

Correspondence to Xianyao Chen or Xuebin Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, X., Church, J. et al. The increasing rate of global mean sea-level rise during 1993–2014. Nature Clim Change 7, 492–495 (2017). https://doi.org/10.1038/nclimate3325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing