Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IPCC reasons for concern regarding climate change risks

This article has been updated

Abstract

The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The enhanced burning embers diagram, providing a global perspective on climate-related risks.
Figure 3: Illustrative version of a vulnerability-dependent burning embers diagram.
Figure 2: Additional burning embers diagrams.

Similar content being viewed by others

Change history

  • 06 January 2017

    In the print version of this Review, references 6, 9, 10, 19, 22, 26, 32, 35, 36, 46, 54, 68–71, 74, 79, 100, 101 and 102 contained errors. These errors have been corrected in the online version.

References

  1. Report on the structured expert dialogue on the 2013–2015 review (UNFCCC, 2015).

  2. Tschakert P. 1.5°C or 2°C: a conduit's view from the science-policy interface at COP20 in Lima, Peru. Clim. Change Responses 2, 3 (2015).

    Google Scholar 

  3. Adoption of the Paris Agreement (UNFCCC, 2015).

  4. Yohe, G. “Reasons for concern”(about climate change) in the United States. Climatic Change 99, 295–302 (2010).

    Google Scholar 

  5. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, http://doi.org/bfpr (2015).

  6. Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1039–1099 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  7. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  Google Scholar 

  8. Smith, J. B. et al. in Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S.) 913–967 (IPCC, Cambridge Univ. Press, 2001).

    Google Scholar 

  9. Cramer, W. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 979–1038 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  10. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  11. Gooseff, M. N., Balser, A., Bowden, W. B. & Jones, J. B. Effects of hillslope thermokarst in northern Alaska. Eos Trans. Amer. Geophys. Union 90, 29–30 (2009).

    Google Scholar 

  12. Karl, T. R, Melillo, J. M. & Peterson, T. C. (eds). Global Climate Change Impacts in the United States. (US Global Change Research Program, 2009).

    Google Scholar 

  13. Jia, G. J., Epstein, H. E. & Walker, D. A. Vegetation greening in the Canadian Arctic related to decadal warming. J. Environ. Monit. 11, 2231–2238 (2009).

    CAS  Google Scholar 

  14. Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    Article  Google Scholar 

  15. Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  Google Scholar 

  16. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Google Scholar 

  17. Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).

    Google Scholar 

  18. Veron, J. et al. The coral reef crisis: the critical importance of <350ppm CO2 . Mar. Poll. Bull. 58, 1428–1436 (2009).

    CAS  Google Scholar 

  19. Gattuso, J. P., Hoegh-Guldberg, O. & Portner, H. O. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 97–100 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  20. Foden, W. B. et al. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    CAS  Google Scholar 

  21. Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).

    Google Scholar 

  22. Fischlin, A. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 211–272 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  23. Warren, R., Price, J., Fischlin, A., de la Nava Santos, S. & Midgley, G. Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Climatic Change 106, 141–177 (2011).

    Google Scholar 

  24. Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).

    Google Scholar 

  25. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS  Google Scholar 

  26. Wong, P. P. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 361–409 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  27. van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Climatic Change 122, 415–429 (2014).

    Google Scholar 

  28. Segan, D. B. et al. Considering the impact of climate change on human communities significantly alters the outcome of species and site-based vulnerability assessments. Divers. Distrib. 21, 1101–1111 (2015).

    Google Scholar 

  29. Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008).

    Google Scholar 

  30. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  Google Scholar 

  31. Strong, A. E., Liu, G., Skirving, W. & Eakin, C. M. NOAA's Coral Reef Watch program from satellite observations. Ann. GIS 17, 83–92 (2011).

    Google Scholar 

  32. Smith, K. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  33. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    Google Scholar 

  34. Christidis, N. et al. Human activity and anomalously warm seasons in Europe. Int. J. Climatol. 32, 225–239 (2012).

    Google Scholar 

  35. Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 953–1028 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  36. IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  37. Peduzzi, P. et al. Global trends in tropical cyclone risk. Nat. Clim. Change 2, 289–294 (2012).

    Google Scholar 

  38. Mendelsohn, R., Emanuel, K., Chonabayashi, S. & Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Change 2, 205–209 (2012).

    Google Scholar 

  39. Dong, W., Liu, Z., Liao, H., Tang, Q. & Li, X. New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Climatic Change 130, 505–518 (2015).

    Google Scholar 

  40. Jones, B. et al. Future population exposure to US heat extremes. Nat. Clim. Change 5, 652–655 (2015).

    Google Scholar 

  41. Birkmann, J. et al. Scenarios for vulnerability: opportunities and constraints in the context of climate change and disaster risk. Climatic Change 133, 53–68 (2015).

    Google Scholar 

  42. Visser, H., Petersen, A. C. & Ligtvoet, W. On the relation between weather-related disaster impacts, vulnerability and climate change. Climatic Change 125, 461–477 (2014).

    Google Scholar 

  43. Fouillet, A. et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 37, 309–317 (2008).

    CAS  Google Scholar 

  44. Garschagen, M. & Romero-Lankao, P. Exploring the relationships between urbanization trends and climate change vulnerability. Climatic Change 133, 37–52 (2015).

    Google Scholar 

  45. Welle, T. & Birkmann, J. The World Risk Index–an approach to assess risk and vulnerability on a global scale. J. Extreme Events 2, 1550003 (2015).

    Google Scholar 

  46. Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 485–533 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  47. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS  Google Scholar 

  48. Challinor, A. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Google Scholar 

  49. Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).

    Google Scholar 

  50. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    CAS  Google Scholar 

  51. Gosling, S. N. & Arnell, N. W. A global assessment of the impact of climate change on water scarcity. Climatic Change 134, 371–385 (2013).

    Google Scholar 

  52. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    CAS  Google Scholar 

  53. Thornton, P. K., Jones, P. G., Ericksen, P. J. & Challinor, A. J. Agriculture and food systems in sub-Saharan Africa in a 4°C+ world. Phil. Trans. R. Soc. A 369, 117–136 (2010).

    Google Scholar 

  54. Niang, I. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1199–1265 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  55. Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science http://doi.org/bt7j (2016).

  56. Dell, M., Jones, B. F. & Olken, B. A. What do we learn from the weather? The new climate-economy literature. J. Econ. Lit. 52, 740–798 (2014).

    Google Scholar 

  57. Hallegatte, S. et al. Shock Waves: Managing the Impacts of Climate Change on Poverty (World Bank, 2015).

    Google Scholar 

  58. Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    CAS  Google Scholar 

  59. Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Phil. Trans. R. Soc. B 365, 3065–3081 (2010).

    Google Scholar 

  60. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    CAS  Google Scholar 

  61. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Google Scholar 

  62. Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Google Scholar 

  63. Tol, R. S. Correction and update: The economic effects of climate change. J. Econ. Perspect. 28, 221–225 (2014).

    Google Scholar 

  64. Revesz, R. L. et al. Global warming: improve economic models of climate change. Nature 508, 173–175 (2014).

    Google Scholar 

  65. Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Google Scholar 

  66. Lenton, T. M. et al. Tipping elements in the Earth's climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  Google Scholar 

  67. Kopp, R. E., Shwom, R., Wagner, G. & Yuan, J. Tipping elements and climate-economic shocks: pathways toward integrated assessment. Earth's Future 7, 346–372 (2016).

    Google Scholar 

  68. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  69. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  70. IPCC: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 3–29 (Cambridge Univ. Press, 2013).

  71. Masson-Delmotte. V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  72. Turney, C. S. & Jones, R. T. Does the Agulhas Current amplify global temperatures during super-interglacials? J. Quaternary Sci. 25, 839–843 (2010).

    Google Scholar 

  73. Cornford, S. L. et al. Century-scale simulations of the response of the West Antarctic ice sheet to a warming climate. Cryosphere 9, 1579–1600 (2015).

    Google Scholar 

  74. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC (IPCC, Cambridge Univ. Press, 2014).

  75. Pollard, D., Chang, W., Haran, M., Applegate, P. & DeConto, R. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques. Geosci. Model Dev. Discuss. 8, 9925–9963 (2015).

    Google Scholar 

  76. Winkelmann, R., Levermann, A., Ridgwell, A. & Caldeira, K. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci. Adv. 1, e1500589 (2015).

    Google Scholar 

  77. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Google Scholar 

  78. Oppenheimer, M., Little, C. M. & Cooke, R. M. Expert judgement and uncertainty quantification for climate change. Nat. Clim. Change 6, 445–451 (2016).

    Google Scholar 

  79. Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 271–359 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  80. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS  Google Scholar 

  81. Burrows, M.T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Google Scholar 

  82. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Google Scholar 

  83. Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).

    Google Scholar 

  84. Feeley, K. J. & Rehm, E. M. Amazon's vulnerability to climate change heightened by deforestation and man-made dispersal barriers. Glob. Change Biol. 18, 3606–3614 (2012).

    Google Scholar 

  85. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Google Scholar 

  86. Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  Google Scholar 

  87. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Google Scholar 

  88. Pörtner, H.-O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 411–484 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  89. Bednaršek, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281, 20140123 (2014).

    Google Scholar 

  90. Wittmann, A. C. & Pörtner, H.-O. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Change 3, 995–1001 (2013).

    CAS  Google Scholar 

  91. Gatusso, J.-P. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 129–131 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  92. Hinkel, J., van Vuuren, D. P., Nicholls, R. J. & Klein, R. J. The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models. Climatic Change 117, 783–794 (2013).

    Google Scholar 

  93. IPCC: Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

  94. Hasegawa, T. et al. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework. Environ. Sci. Technol. 48, 438–445 (2013).

    Google Scholar 

  95. Hasegawa, T. et al. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 49, 7245–7253 (2015).

    CAS  Google Scholar 

  96. Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl Acad. Sci. USA 104, 19703–19708 (2007).

    CAS  Google Scholar 

  97. Renn, O. Concepts of risk: an interdisciplinary review part 1: disciplinary risk concepts. Gaia 17, 50–66 (2008).

    Google Scholar 

  98. Cardona, O.-D. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. (eds Field, C. B. et al.) 65–108 (IPCC, Cambridge Univ. Press, 2012).

    Google Scholar 

  99. Cutter, S. L. Societal responses to environmental hazards. Int. Soc. Sci. J. 48, 525–536 (1996).

    Google Scholar 

  100. IPCC: Annex II: Glossary. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1757–1776 (Cambridge Univ. Press, 2014).

  101. Lavell, A. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 25–64 (IPCC, Cambridge Univ. Press, 2012).

    Google Scholar 

  102. Schneider, S. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 779–810 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  103. Smith, J. B. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proc. Natl Acad. Sci. USA 106, 4133–4137 (2009).

    CAS  Google Scholar 

  104. Birkmann, J. & Welle, T. Assessing the risk of loss and damage: exposure, vulnerability and risk to climate-related hazards for different country classifications. Int. J. Glob. Warming 8, 191–212 (2015).

    Google Scholar 

Download references

Acknowledgements

K.T. gratefully acknowledges research support of the Environment Research and Technology Development Fund (S-10-1) provided by the Ministry of the Environment, Japan. P.M. and J.-P.v.Y. gratefully acknowledge research support provided by the Belgian Science Policy Office (BELSPO). We thank Y. Estrada and L. White for assistance with figures.

Author information

Authors and Affiliations

Authors

Contributions

B.C.O. and M.O. led the design of the study. B.C.O. led, and M.O. contributed to, the coordination of the paper. M.O., R.W., S.H., R.E.K., B.C.O., H.O.P., and B.S. led the drafting of subsections of the paper. B.C.O., P.M., R.L., K.J.M., M.M., and K.T. led the development of figures. All authors contributed to writing and/or editing the paper.

Corresponding author

Correspondence to Brian C. O'Neill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

IPCC reasons for concern regarding climate change risks (PDF 951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Neill, B., Oppenheimer, M., Warren, R. et al. IPCC reasons for concern regarding climate change risks. Nature Clim Change 7, 28–37 (2017). https://doi.org/10.1038/nclimate3179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing