Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key ecological responses to nitrogen are altered by climate change

Abstract

Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The effects of increased nitrogen (N), temperature (T) and precipitation (P) upon terrestrial carbon pools (left panel) and fluxes (right panel) from published meta-analyses.
Figure 3

Similar content being viewed by others

References

  1. Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad Sci. USA 106, 203–208 (2009).

    Article  CAS  Google Scholar 

  2. Compton, J. E. et al. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecol. Lett. 14, 804–815 (2011).

    Article  Google Scholar 

  3. Röckstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  Google Scholar 

  4. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  5. Pinder, R. W. et al. Climate change impacts of US reactive nitrogen. Proc. Natl Acad Sci. USA 109, 7671–7675 (2012).

    Article  CAS  Google Scholar 

  6. Engardt, M. & Langner, J. Simulations of future sulphur and nitrogen deposition over Europe using meteorological data from three regional climate projections. Tellus B 65, 20348 (2013).

    Article  CAS  Google Scholar 

  7. Tagaris, E. et al. Impacts of future climate change and emissions reductions on nitrogen and sulfur deposition over the United States. Geophys. Res. Lett. 35, L08811 (2008).

    Article  CAS  Google Scholar 

  8. Baron, J. S. et al. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114, 71–92 (2013).

    Article  CAS  Google Scholar 

  9. Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).

    Article  Google Scholar 

  10. Rustad, L. E., Campbell, J. L. & Marion, G. M. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecol. 126, 543–562 (2001).

    Article  CAS  Google Scholar 

  11. Jiménez Cisneros, B. E. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  12. Morse, J. L., Duran, J. & Groffman, P. M. Soil denitrification fluxes in a northern hardwood forest: the importance of snowmelt and implications for ecosystem N budgets. Ecosyst. 18, 520–532 (2015).

    Article  CAS  Google Scholar 

  13. Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil. Trans. R. Soc. B 368, 20130119 (2013).

    Article  CAS  Google Scholar 

  14. Welter, J. R. et al. Does N-2 fixation amplify the temperature dependence of ecosystem metabolism? Ecology 96, 603–610 (2015).

    Article  Google Scholar 

  15. Billen, G., Garnier, J. & Lassaletta, L. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Phil. Trans. R. Soc. B 368, 20130123 (2013).

    Article  CAS  Google Scholar 

  16. Band, L. E., Tague, C. L., Groffman, P. & Belt, K. Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrol. Process. 15, 2013–2028 (2001).

    Article  Google Scholar 

  17. Boulton, A. J. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biol. 52, 632–650 (2007).

    Article  Google Scholar 

  18. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, A. J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123 (2009).

    Article  Google Scholar 

  19. Goodridge, B. M. & Melack, J. M. Land use control of stream nitrate concentrations in mountainous coastal California watersheds. J. Geophys. Res. Biogeosci. 117, G02005 (2012).

    Article  CAS  Google Scholar 

  20. Kaushal, S. S. et al. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ. Sci. Technol. 42, 5872–5878 (2008).

    Article  CAS  Google Scholar 

  21. Lamersdorf, N. P. et al. Effect of drought experiments using roof installations on acidification/nitrification of soils. Forest Ecol. Manag. 101, 95–109 (1998).

    Article  Google Scholar 

  22. Van Metre, P. C. et al. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought. J. Environ. Qual. http://dx.doi.org/10.2134/jeq2015.12.0591 (2016).

  23. Bayley, S. E., Schindler, D. W., Parker, B. R., Stainton, M. P. & Beaty, K. G. Effects of forest-fire and drought on acidity of a base-poor boreal forest stream — similarities between climatic warming and acidic precipitation. Biogeochemistry 17, 191–204 (1992).

    Article  CAS  Google Scholar 

  24. Kaushal, S. S. et al. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J. Am. Wat. Res. Assoc. 50, 585–614 (2014).

    Article  CAS  Google Scholar 

  25. Casson, N. J., Eimers, M. C. & Watmough, S. A. Impact of winter warming on the timing of nutrient export from forested catchments. Hydrol. Process. 26, 2546–2554 (2012).

    Article  CAS  Google Scholar 

  26. Baron, J. S., Schmidt, T. M. & Hartman, M. D. Climate-induced changes in high elevation stream nitrate dynamics. Glob. Change Biol. 15, 1777–1789 (2009).

    Article  Google Scholar 

  27. Weier, K. L., Doran, J. W., Power, J. F. & Walters, D. T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 51, 66–72 (1993).

    Article  Google Scholar 

  28. Anderson, T. R., Groffman, P. M. & Walter, M. T. Using a soil topographic index to distribute denitrification fluxes across a northeastern headwater catchment. J. Hydrol. 522, 123–134 (2015).

    Article  Google Scholar 

  29. Duncan, J. M., Groffman, P. M. & Band, L. E. Towards closing the watershed nitrogen budget: apatial and temporal scaling of denitrification. J. Geophys. Res. Biogeosci. 118, 1105–1119 (2013).

    Article  CAS  Google Scholar 

  30. Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geosci. 3, 13–17 (2010).

    Article  CAS  Google Scholar 

  31. Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).

    Article  CAS  Google Scholar 

  32. de Vries, W., Du, E. Z. & Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Env. Sust. 9–10, 90–104 (2014).

    Article  Google Scholar 

  33. Chu, C. et al. Does climate directly influence NPP globally? Glob. Change Biol. 22, 12–24 (2015).

    Article  Google Scholar 

  34. Lu, M. et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94, 726–738 (2013).

    Article  Google Scholar 

  35. Bachelet, D., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 4, 164–185 (2001).

    Article  CAS  Google Scholar 

  36. Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).

    Article  Google Scholar 

  37. Xia, J. Y. & Wan, S. Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 179, 428–439 (2008).

    Article  CAS  Google Scholar 

  38. Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).

    Article  Google Scholar 

  39. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article  CAS  Google Scholar 

  40. Churkina, G. et al. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosci. 7, 2749–2764 (2010).

    Article  CAS  Google Scholar 

  41. Emmett, B. A. et al. The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems 7, 625–637 (2004).

    Article  Google Scholar 

  42. Burd, A. et al. Terrestrial and marine perspectives on modeling organic matter and degredation pathways. Glob. Change Biol. 22, 121–136 (2015).

    Article  Google Scholar 

  43. Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W. & Shevliakova, E. Nitrogen cycling and feedbacks in a global dynamic land model. Glob. Biogeochem. Cy. 24, GB1001 (2010).

    Google Scholar 

  44. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosci. 3, 315–322 (2010).

    Article  CAS  Google Scholar 

  45. Conant, R. T. et al. Temperature and soil organic matter decomposition rates — synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article  Google Scholar 

  46. Xiang, S. R., Doyle, A., Holden, P. A. & Schimel, J. P. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem. 40, 2281–2289 (2008).

    Article  CAS  Google Scholar 

  47. Laudon, H. et al. Cross-regional prediction of long-term trajectory of stream water DOC response to climate change. Geophys. Res. Lett. 39, L18404 (2012).

    Article  CAS  Google Scholar 

  48. Wu, Z., Koch, G. W., Dijkstra, P., Bowker, M. A. & Hungate, B. A. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient. Ecosystems 14, 1066–1080 (2011).

    Article  CAS  Google Scholar 

  49. Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  50. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article  CAS  Google Scholar 

  51. Kastowski, M., Hinderer, M. & Vecsei, A. Long-term carbon burial in European lakes: analysis and estimate. Glob. Biogeochem. Cy. 25, GB3019 (2011).

    Article  CAS  Google Scholar 

  52. Gudasz, C. et al. Temperature-controlled organic carbon mineralization in lake sediments. 466, 478–481 (2010).

  53. Schaberg, P. G. et al. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce. Can. J. For. Res. 32, 1351–1359 (2002).

    Article  CAS  Google Scholar 

  54. McNulty, S. G., Cohen, E. C., Myers, J. A. M., Sullivan, T. J. & Li, H. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environ. Poll. 149, 281–292 (2007).

    Article  CAS  Google Scholar 

  55. Driscoll, C. T. et al. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. BioScience 51, 180–198 (2001).

    Article  Google Scholar 

  56. Aber, J. et al. Nitrogen saturation in temperate forest ecosystems — hypotheses revisited. BioScience 48, 921–934 (1998).

    Article  Google Scholar 

  57. Burns, D. A., Lynch, J. A., Cosby, B. J., Fenn, M. E., Baron, J. S. National Acid Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment (National Science and Technology Council, 2011).

    Google Scholar 

  58. Mosley, L. M. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 140, 203–214 (2015).

    Article  CAS  Google Scholar 

  59. Kowalik, R. A., Cooper, D. M., Evans, C. D. & Ormerod, S. J. Acidic episodes retard the biological recovery of upland British streams from chronic acidification. Glob. Change Biol. 13, 2439–2452 (2007).

    Article  Google Scholar 

  60. Wright, R. F. & Schindler, D. W. Interaction of acid rain and global changes: effects on terrestrial and aquatic ecosystems. Wat. Air Soil Poll. 85, 89–99 (1995).

    Article  CAS  Google Scholar 

  61. Evans, C. et al. Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry 91, 13–35 (2008).

    Article  CAS  Google Scholar 

  62. Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol. Monogr. 75, 139–157 (2005).

    Article  Google Scholar 

  63. Murdoch, P. S., Burns, D. A. & Lawrence, G. B. Relation of climate change to the acidification of surface waters by nitrogen deposition. Environ. Sci. Technol. 32, 1642–1647 (1998).

    Article  CAS  Google Scholar 

  64. Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S. & Cosby, B. J. Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Sci. Soc. Am. J. 67, 1909–1919 (2003).

    Article  CAS  Google Scholar 

  65. Li, H. & McNulty, S. G. Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity. Environ. Poll. 149, 315–326 (2007).

    Article  CAS  Google Scholar 

  66. Roberto, H. G. & Broecker, W. S. The separate and combined effects of temperature, soil p CO2, and organic acidity on silicate weathering in the soil environment: formulation of a model and results. Glob. Biogeochem. Cy. 8, 141–155 (1994).

    Article  Google Scholar 

  67. Belyazid, S., Kurz, D., Braun, S., Sverdrup, H., Rihm, B., Hettelingh J. P. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environ. Poll. 159, 789–801 (2011).

    Article  CAS  Google Scholar 

  68. Wu, W. & Driscoll, C. T. Impact of climate change on three-dimensional dynamic critical load functions. Environ. Sci. Technol. 44, 720–726 (2010).

    Article  CAS  Google Scholar 

  69. Poleo, A. B. S. & Muniz, I. P. The effect of aluminum in soft-water at low pH and different temperatures on mortality, ventilation frequency and water-balance in smoltifying Atlantic Salmon, Salmo-salar. Environ. Biol. Fish 36, 193–203 (1993).

    Article  Google Scholar 

  70. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article  CAS  Google Scholar 

  71. Howarth, R. et al. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 9, 18–26 (2011).

    Article  Google Scholar 

  72. Roem, W. J., Klees, H. & Berendse, F. Effects of nutrient addition and acidification on plant species diversity and seed germination in heathland. J. Appl. Ecol. 39, 937–948 (2002).

    Article  CAS  Google Scholar 

  73. Sullivan, T. J. et al. Effects of acidic deposition and soil acidification on sugar maple trees in the adirondack mountains, New York. Environ. Sci. Technol. 47, 12687–12694 (2013).

    Article  CAS  Google Scholar 

  74. Greaver, T. L. et al. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Front. Ecol. Environ. 10, 365–372 (2012).

    Article  Google Scholar 

  75. de Sassi, C., Lewis, O. T. & Tylianakis, J. M. Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology 93, 1892–1901 (2012).

    Article  Google Scholar 

  76. Dise, N. et al. in The European Nitrogen Assessment (ed. Mark A. Sutton) Ch. 21 (Cambridge Univ. Press, 2011).

    Google Scholar 

  77. Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A. & Field, C. B. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl Acad Sci. USA 100, 7650–7654 (2003).

    Article  CAS  Google Scholar 

  78. Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geosci. 7, 920–924 (2014).

    Article  CAS  Google Scholar 

  79. Reich, P. B. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science 326, 1399–14020 (2009).

    Article  CAS  Google Scholar 

  80. Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

    Article  CAS  Google Scholar 

  81. Elser, J. J. et al. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326, 835–837 (2009).

    Article  CAS  Google Scholar 

  82. Hobbs, W. O. et al. Quantifying recent ecological changes in remote lakes of North America and greenland using sediment diatom assemblages. Plos One http://doi.org/cj89hf (2010).

  83. Jeppesen, E. et al. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J. Limnol. 73, 88–111 (2014).

    Article  Google Scholar 

  84. Kangur, K. et al. Long-term effects of extreme weather events and eutrophication on the fish community of shallow lake Peipsi (Estonia/Russia). J. Limnol. 72, 376–387 (2013).

    Article  Google Scholar 

  85. Winfield, I. J. et al. Population trends of Arctic charr (Salvelinus alpinus) in the UK: assessing the evidence for a widespread decline in response to climate change. Hydrobiol. 650, 55–65 (2010).

    Article  Google Scholar 

  86. Jeppesen, E. et al. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiol. 694, 1–39 (2012).

    Article  CAS  Google Scholar 

  87. Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecol. 151, 93–103 (2007).

    Article  CAS  Google Scholar 

  88. Ozen, A. et al. Long-term effects of warming and nutrients on microbes and other plankton in mesocosms. Freshwater Biol. 58, 483–493 (2013).

    Article  CAS  Google Scholar 

  89. Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).

    Article  Google Scholar 

  90. Williamson, T. J. et al. Warming alters coupled carbon and nutrient cycles in experimental streams. Glob. Change Biol. 22, 2152–2164 (2016).

    Article  Google Scholar 

  91. Meerhoff, M. et al. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Adv. Ecol. Res. 46, 259–349 (2012).

    Article  Google Scholar 

  92. Feuchtmayr, H. et al. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. J. Appl. Ecol. 46, 713–723 (2009).

    Article  Google Scholar 

  93. Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiol. 466, 329–337 (2001).

    Article  Google Scholar 

  94. Jeppesen, E. et al. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiol. 581, 269–285 (2007).

    Article  CAS  Google Scholar 

  95. Paerl, H. W. et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 45, 1973–1983 (2011).

    Article  CAS  Google Scholar 

  96. Hernández, D. L. et al. Nitrogen pollution is linked to US listed species declines. BioScience 66, 213–222 (2016).

    Article  Google Scholar 

  97. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  Google Scholar 

  98. Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86, 3252–3257 (2005).

    Article  Google Scholar 

  99. Dieleman, W. I. J. et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).

    Article  Google Scholar 

  100. Liu, L. et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob Change Biol. 22, 1394–1405 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the participants of the Environmental Protection Agency sponsored workshop: 'Interacting Effects of Climate and Nitrogen on Ecosystems and Their Services: Workshop to Review Current Science and Inform Policy-Driven Scientific Needs' for their contributions. We also thank Meredith Lassiter and Ellen Cooter for technical comments to improve the manuscript. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the US EPA.

Author information

Authors and Affiliations

Authors

Contributions

C.M.C., J.E.C., R.A.H. and T.L.G conceived the paper. T.L.G., C.M.C., J.E.C., D.V., A.F.T. and C.P.W. led the writing, with contributions from L.L., E.F., E.A.D, C.L.G., J.A.L., L.E.B., C.L.T., J.S.B., J.D.H. and K.J.N.

Corresponding author

Correspondence to T. L. Greaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greaver, T., Clark, C., Compton, J. et al. Key ecological responses to nitrogen are altered by climate change. Nature Clim Change 6, 836–843 (2016). https://doi.org/10.1038/nclimate3088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3088

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology