Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global warming and changes in drought

Abstract

Several recently published studies have produced apparently conflicting results of how drought is changing under climate change. The reason is thought to lie in the formulation of the Palmer Drought Severity Index (PDSI) and the data sets used to determine the evapotranspiration component. Here, we make an assessment of the issues with the PDSI in which several other sources of discrepancy emerge, not least how precipitation has changed and is analysed. As well as an improvement in the precipitation data available, accurate attribution of the causes of drought requires accounting for natural variability, especially El Niño/Southern Oscillation effects, owing to the predilection for wetter land during La Niña events. Increased heating from global warming may not cause droughts but it is expected that when droughts occur they are likely to set in quicker and be more intense.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time series of global land (60° S to 75° N) precipitation departures from the annual mean for several data sets.
Figure 2: Time series of mean precipitation for zones indicated with a base period of 1981–2000.
Figure 3: Time series of 5-year smoothed global-mean annual scPDSI_PM, calculated using four different precipitation data sets.

References

  1. Trenberth, K. E. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 235–336 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  3. Dai, A., Trenberth, K. E. & Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004).

    Article  Google Scholar 

  4. Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 116, D12115 (2011).

    Article  Google Scholar 

  5. Dai, A. Increasing drought under global warming in observations and models. Nature Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  6. Wang, G. L. Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Clim. Dynam. 25, 739–753 (2005).

    Article  Google Scholar 

  7. Burke, E. J., Brown, S. J. & Christidis, N. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeorol. 7, 1113–1125 (2006).

    Article  Google Scholar 

  8. Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).

    Article  CAS  Google Scholar 

  9. Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).

    Article  Google Scholar 

  10. Dai, A. Drought under global warming: A review. WIREs Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  11. Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article  Google Scholar 

  12. Hoerling, M., Eischeid, J. & Perlwitz, J. Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Clim. 23, 2131–2145 (2010).

    Article  Google Scholar 

  13. Giorgi, F. et al. Higher hydroclimatic intensity with global warming. J. Clim. 24, 5309–5324 (2011).

    Article  Google Scholar 

  14. Nicholls, N. The changing nature of Australian droughts. Climatic Change 63, 323–336 (2004).

    Article  Google Scholar 

  15. Van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Wat. Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  16. Lewis, S. C. & Karoly, D. J. Anthropogenic contributions to Australia's record summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709 (2013).

    Article  Google Scholar 

  17. Seager, R. & Vecchi, G. A. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl Acad. Sci. USA 107, 21277–21282 (2010).

    Article  CAS  Google Scholar 

  18. Chou, C. et al. Increase in the range between wet and dry season precipitation. Nature Geosci. 6, 263–267 (2013).

    Article  CAS  Google Scholar 

  19. Trenberth, K. E., Dai, A., Rasmussen R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  20. Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    Article  CAS  Google Scholar 

  21. Van der Schrier, G., Jones, P. D. & Briffa, K. R. The sensitivity of the PDSI to the Thornthwaite and Penman–Monteith parameterizations for potential evapotranspiration. J. Geophys. Res. 116, D03106 (2011).

    Article  Google Scholar 

  22. Orlowsky, B. & Seneviratne, S. Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765–1781 (2013).

    Article  Google Scholar 

  23. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article  Google Scholar 

  24. Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).

    Article  Google Scholar 

  25. Wells, N., Goddard, S. & Hayes M. J. A self-calibrating Palmer Drought Severity Index. J. Clim. 17, 2335–2351 (2004).

    Article  Google Scholar 

  26. Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 50, RG2005 (2012).

    Article  Google Scholar 

  27. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).

    Article  Google Scholar 

  28. Mueller, B. et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 38, L06402 (2011).

    Google Scholar 

  29. Van der Schrier, G., Barichivich, J., Briffa, K. R. & Jones, P. D. A scPDSI-based global dataset of dry and wet spells for 1901–2009. J. Geophys. Res. 118, 4025–4048 (2013).

    Google Scholar 

  30. Lorenz, C. & H. Kunstmann, H. The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeorol. 13, 1397–1420 (2012).

    Article  Google Scholar 

  31. Nickl, E., Willmott, C. J., Matsuura, K. & Robeson, S. M. Changes in annual land-surface precipitation over the twentieth and early twenty-first century. Ann. Assoc. Am. Geogr. 100, 729–739 (2010).

    Article  Google Scholar 

  32. Jones, P. D. & Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol. 16, 361–377 (1996).

    Article  Google Scholar 

  33. Mueller, B. & Seneviratne, S. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).

    Article  CAS  Google Scholar 

  34. Gu, G., Adler, R. F., Huffman, G. J. & Curtis, S. Tropical rainfall variability on interannual-to-interdecadal/longer-time scales derived from the GPCP monthly product. J. Clim. 20, 4033–4046 (2007).

    Article  Google Scholar 

  35. Vicente-Serrano, S. M. et al. A multi-scalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. 116, D20109 (2011).

    Article  Google Scholar 

  36. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Google Scholar 

  37. Dai, A. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim. Dynam. 41, 633–646 (2013b).

    Article  Google Scholar 

  38. http://pmm.nasa.gov/GPM

  39. Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

    Article  Google Scholar 

  40. Parker, D. E., Hilburn, K., Hennon, P. & Becker, A. Bull. Am. Meteorol. Soc. 93 (special issue), S26–S27 (2012).

    Google Scholar 

  41. Huffman, G. J., Adler, R. F., Bolvin, D. T. & Gu, G. J. Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett. 36, L17808 (2009).

    Article  Google Scholar 

  42. http://www.cru.uea.ac.uk/cru/data/hrg

  43. http://climate.geog.udel.edu/~climate/html_pages/archive.html

  44. ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_v6_doi_download.html

  45. http://precip.gsfc.nasa.gov/gpcp_v2.2_data.html

  46. http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php

Download references

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation. P.D.J. has been supported by the US Department of Energy (Grant DE-SC0005689). K.R.B. acknowledges support from UK NERC (NE/G018863/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. Trenberth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trenberth, K., Dai, A., van der Schrier, G. et al. Global warming and changes in drought. Nature Clim Change 4, 17–22 (2014). https://doi.org/10.1038/nclimate2067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing