Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pervasive transition of the Brazilian land-use system

Abstract

Agriculture, deforestation, greenhouse gas emissions and local/regional climate change have been closely intertwined in Brazil. Recent studies show that this relationship has been changing since the mid 2000s, with the burgeoning intensification and commoditization of Brazilian agriculture. On one hand, this accrues considerable environmental dividends including a pronounced reduction in deforestation (which is becoming decoupled from agricultural production), resulting in a decrease of 40% in nationwide greenhouse gas emissions since 2005, and a potential cooling of the climate at the local scale. On the other hand, these changes in the land-use system further reinforce the long-established inequality in land ownership, contributing to rural–urban migration that ultimately fuels haphazard expansion of urban areas. We argue that strong enforcement of sector-oriented policies and solving long-standing land tenure problems, rather than simply waiting for market self-regulation, are key steps to buffer the detrimental effects of agricultural intensification at the forefront of a sustainable pathway for land use in Brazil.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial distribution of agriculture in Brazilian biomes in 2000.
Figure 2: Trends in land-use change and agricultural expansion in Brazil during the 1990–2012 period.
Figure 4: Evolution of agrarian structure in Brazil between 1985 and 2006.
Figure 5: Greenhouse gas emissions associated with land use in Brazil3,76.
Figure 3: Biofuels, roads, protected areas and fire in Brazilian biomes.

Similar content being viewed by others

References

  1. FAOSTAT (FAO, accessed 20 June 2012); http://go.nature.com/E6UaXd

  2. Gridded Livestock of the World 2007 (FAO, 2007).

  3. Second National Communication of Brazil to the United Nations Framework Convention on Climate Change (Ministério de Ciência e Tecnologia, 2010).

  4. Brasil Projeções do Agronegócio 2010–2011 a 2020–2021 (Ministério da Agricultura, Pecuária e Abastecimento, 2011).

  5. Plano Decenal de Expansão de Energia 20011/2020 (Empresa de Pesquisa Energética, 2011).

  6. Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).

    Article  Google Scholar 

  7. Killeen, T. J. A Perfect Storm in the Amazon Wilderness, Development and Conservation in the Context of the Initiative for Integration of the Regional Infrastructure of South America (IIRSA) (Conservation International, 2007).

    Google Scholar 

  8. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12–03 (FAO, 2012).

    Google Scholar 

  9. Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52, 134–150 (2002).

    Article  Google Scholar 

  10. Nepstad, D. C., Stickler, C. M. & Almeida, O. T. Globalization of the Amazon soy and beef industries: Opportunities for conservation. Conserv. Biol. 20, 1595–1603 (2006).

    Article  Google Scholar 

  11. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    Article  CAS  Google Scholar 

  12. Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).

    Article  CAS  Google Scholar 

  13. Angelsen, A. Policies for reduced deforestation and their impact on agricultural production. Proc. Natl Acad. Sci. USA 107, 19639–19644 (2010).

    Article  CAS  Google Scholar 

  14. Ferreira, N. C., Ferreira, L. G. Jr, Huete, A. R. & Ferreira, M. E. An operational deforestation mapping system using MODIS data and spatial context analysis. Int. J. Remote Sens. 28, 47–62 (2007).

    Article  Google Scholar 

  15. Satellite Monitoring of Deforestation in Brazilian Biomes Program (IBAMA, accessed 25 February 2012); http://siscom.ibama.gov.br/monitorabiomas

  16. Valor Bruto da Produção: 2003–2012 (MAPA, 2012).

  17. Censo Agropecuário 2006 — Primeiros Resultados: Agricultura Familiar Brasil, Grandes Regiões e Unidades da Federação (IBGE, 2009).

  18. Municipal Agricultural Production and Population Census (Instituto Brasileiro de Geografia e Estatística, 2012); http://go.nature.com/vdm5lC

  19. Martinelli, L. A. & Filoso, S. Expansion of sugarcane ethanol production in Brazil: Environmental and social challenges. Ecol. Appl. 18, 885–898 (2008).

    Article  Google Scholar 

  20. Exportação por Ano (ABIEC, accessed 9 September 2013); http://go.nature.com/nWyozz

  21. Barretto, A. G. O. P., Berndes, G., Sparovek, G. & Wirsenius, S. Agricultural intensification in Brazil and its effects on land-use patterns: An analysis of the 1975–2006 period. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.12174 (2013).

  22. Martinelli, L. A., Naylor, R., Vitousek, P. M. & Moutinho, P. Agriculture in Brazil: Impacts, costs, and opportunities for a sustainable future. Curr. Opin. Environ. Sustain. 2, 431–438 (2010).

    Article  Google Scholar 

  23. Regulamenta os Arts. 6, 11 e 12 da Lei no 12.187, de 29 de Dezembro de 2009, que Institui a Política Nacional sobre Mudança do Clima: PNMC, e dá Outras Providências Federal Decree 7.390/2010 (Government of Brazil, 2010).

  24. Cohn, A., Bowman, M., Zilberman, D. & O'Neill, K. The Viability of Cattle Ranching Intensification in Brazil as a Strategy to Spare Land and Mitigate Greenhouse Gas Emissions (CGIAR Research Program on Climate Change, Agriculture and Food Security, 2011).

    Google Scholar 

  25. Kaimowitz, D., Angelsen, A. Will livestock intensification help save Latin America's tropical forest? J. Sustain. For. 27, 6–24 (2008).

    Article  Google Scholar 

  26. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005 Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    Article  CAS  Google Scholar 

  27. Balmford, A., Green, R. E., Scharlemann, J. P. W. Sparing land for nature: Exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob. Change Biol. 11, 1594–1605 (2005).

    Article  Google Scholar 

  28. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    Article  CAS  Google Scholar 

  29. Nepstad, D. et al. The end of deforestation in the Brazilian Amazon. Science 326, 1350–1351 (2009).

    Article  CAS  Google Scholar 

  30. Rudorff, B. F. T. et al. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).

    Article  Google Scholar 

  31. Walker, R. et al. Protecting the Amazonia with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).

    Article  CAS  Google Scholar 

  32. Assunção, J. A., Gandour, C. C. & Rocha, R. Deforestation Slowdown in the Legal Amazon: Prices or Policies? (Climate Policy Initiative, 2012).

    Google Scholar 

  33. Walker, R. The scale of forest transition: Amazonia and the Atlantic forests of Brazi. Appl. Geogr. 32, 12–20 (2012).

    Article  Google Scholar 

  34. Directive 2009/28/CE of the European Parliament and Council, of 23 April 2009, on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (EU, 2009).

  35. Wolford, W. Participatory democracy by default: Land reform, social movements and the state in Brazil. J. Peasant Stud. 37, 91–109 (2010).

    Article  Google Scholar 

  36. Costa, S. H. G. A Questão Agrária no Brasil e a Bancada Ruralista no Congresso Nacional Masters dissertation, Univ. de São Paulo (2012).

    Book  Google Scholar 

  37. Ramos, S. Y & Martha-Júnior, G. B. Evolução da Política de Crédito Rural Brasileira (Embrapa, 2010).

    Google Scholar 

  38. Abbey, L. A., Baer, B. & Filizzola, M. Growth efficiency, and equity: The impact of agribusiness and land reform in Brazil. Lat. Am. Bus. Rev. 7, 93–115 (2006).

    Article  Google Scholar 

  39. Ferreira, F. G. H., Leite, P. G. & Litchfield, J. A. The Rise and Fall of Brazilian Inequality: 1981–2004 Policy Research Working Paper 3867 (World Bank, 2006).

    Book  Google Scholar 

  40. VanWey, L. K., Spera S., de Sa, R., Mahr, D. & Mustard, J. F. Socioeconomic development and agricultural intensification in Mato Grosso. Phil. Trans. R. Soc. B. 368, 20120168 (2013).

    Article  Google Scholar 

  41. Martinelli, L. A., Joly, C. A., Nobre, C. A. & Sparovek, G. The false dichotomy between preservation of the natural vegetation and food production in Brazil. Biota Neotrop. 10, 323–330 (2010).

    Article  Google Scholar 

  42. Índice de Desenvolvimento Humano Municipal Brasileiro (PNUD, 2013).

  43. Perz, S. G. The rural exodus in the context of economic crisis, globalization and reform in Brazil. Int. Migr. Rev. 131, 842–881 (2000).

    Article  Google Scholar 

  44. Aguiar, D. A., Rudorff, B. F. T., Silva, W. F., Adami, M. & Mello, M. P. Remote sensing images in support of environmental protocol: monitoring the sugarcane harvest in São Paulo state, Brazil. Remote Sens. 3, 2682–2703 (2011).

    Article  Google Scholar 

  45. Lambin, E. F. et al. Estimating the world's potentially available cropland using a bottom-up approach. Glob. Environ. Change http://dx.doi.org/10.1016/j.gloenvcha.2013.05.005 (2013).

  46. Mata, D., Deichmann, U., Henderson, J. V., Lall, S. V. & Wang H. G. Determinants of City Growth in Brazil (National Bureau of Economic Research, 2005).

    Book  Google Scholar 

  47. DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in twenty-first century. Nature Geosci. 3, 178–181 (2010).

    Article  CAS  Google Scholar 

  48. Hotez, P. J. Forgotten Diseases, Forgotten People: The Neglected Tropical Diseases and Their Impact on Global Health and Development (ASM, 2008).

    Google Scholar 

  49. Torres, R. R., Lapola, D. M., Marengo, J. A. & Lombardo, M. A. Socio-climatic hotspots in Brazil. Climatic Change 115, 597–609 (2012).

    Article  Google Scholar 

  50. Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).

    Article  Google Scholar 

  51. Morton, J. F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl Acad. Sci. USA 104, 19680–19685 (2007).

    Article  CAS  Google Scholar 

  52. Brondizio, E. S. & Moran, E. F. Human dimensions of climate change: The vulnerability of small farmers in the Amazon. Phil. Trans. R. Soc. B 363, 1803–1809 (2008).

    Article  Google Scholar 

  53. Lapola, D. M. et al. Impacts of climate change and the end of deforestation on land use in the Brazilian Legal Amazon. Earth Interact. 15, 1–29 (2011).

    Article  Google Scholar 

  54. Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    Article  CAS  Google Scholar 

  55. Assad, E. & Pinto, H. S. (eds) Aquecimento Global e a Nova Geografia da Produção Agrícola no Brasil (EMRAPA and UNICAMP, 2008).

    Google Scholar 

  56. Margulis, S., Dubeux, C. B. S. & Marcovitch, J. (Technical coordinators) The Economics of Climate Change in Brazil: Costs and Opportunities (FEA/USP, 2011).

    Google Scholar 

  57. Oliveira, L. J. C., Costa, M. H., Soares-Filho, B. S. & Coe, M. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 8, 024021 (2013).

    Article  Google Scholar 

  58. Lobell, D. B. & Field, C. B. Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob. Change Biol. 14, 39–45 (2008).

    Article  Google Scholar 

  59. Torres, R. R. & Marengo, J. A. Uncertainty assessments of climate projections over South America. Theor. Appl. Climatol. 112, 253–272 (2013).

    Article  Google Scholar 

  60. Nobre, C. A., Sellers, P. & Shukla, J. Amazonian deforestation and regional climate change. J. Climate 4, 957–988 (1991).

    Article  Google Scholar 

  61. Negri, A. J., Adler, R. F., Xu, L. & Surratt, J. The impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).

    Article  Google Scholar 

  62. Malhado, A. C. M., Pires, G. F. & Costa, M. H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio 39, 580–584 (2010).

    Article  Google Scholar 

  63. Loarie, S. R., Lobell, D. B., Asner, G. P., Mu, Q. & Field, C. B. Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Clim. Change 1, 105–109 (2011).

    Article  Google Scholar 

  64. Georgescu, M., Lobell, D. B., Field, C. B. & Mahalov, A. Simulated hydroclimatic impacts of projected Brazilian sugarcane expansion. Geophys. Res. Lett. http://onlinelibrary.wiley.com/doi/10.1002/grl.50206/abstract (2013).

  65. Costa, M. H., Yanagi, S. N. M., Souza, P. J. O. P., Ribeiro, A. & Rocha, E. J. P. Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett. 34, L07706 (2007).

    Google Scholar 

  66. Sampaio, G. et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 34, L17709 (2007).

    Article  Google Scholar 

  67. Costa, M. H. & Foley, J. A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Clim. 13, 18–34 (2000).

    Article  Google Scholar 

  68. Souza, D. C. & Oyama, M. D. Climatic consequences of gradual desertification in the semi-arid area of Northeast Brazil. Theoretical and Applied Climatology 103, 345–357 (2011).

    Article  Google Scholar 

  69. Monitoring of Vegetation Fires (INPE, accessed 6 December 2013); http://go.nature.com/pFbvTz

  70. Lara, L. L. et al. Properties of aerosols from sugar cane burning emissions in Southern Brazil. Atmos. Environ. 39, 4627–4637 (2005).

    Article  CAS  Google Scholar 

  71. Rosenfeld, D. et al. Flood or drought: How do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Article  CAS  Google Scholar 

  72. Neill, C. et al. Watershed responses to Amazon soya bean cropland expansion and intensification. Phil. Trans. R. Soc. B 368, 20120425 (2013).

    Article  Google Scholar 

  73. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  74. Aguiar, A. P. D. et al. Modeling the spatial and temporal heterogeneity of deforestation-driven carbon emissions: the INPE-EM framework applied to the Brazilian Amazon. Global Change Biol. 18, 3346–3366 (2012).

    Article  Google Scholar 

  75. Araújo, F. M., Ferreira, L. G. & Arantes, A. E. Distribution patterns of burned areas in the Brazilian biomes: an analysis based on satellite data for the 2002–2010 period. Remote Sens. 4, 1929–1946 (2012).

    Article  Google Scholar 

  76. Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil (MCTI, 2013).

  77. Bustamante, M. M. C. et al. Estimating greenhouse gas emissions fom cattle raising in Brasil. Climatic Change 115, 559–577 (2012).

    Article  CAS  Google Scholar 

  78. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108, 20260–20264 (2011).

    Article  CAS  Google Scholar 

  79. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  Google Scholar 

  80. Bungestab, D. M. (ed.) Sistemas de Integração Lavoura-pecuária-floresta: A Produção Sustentável (Embrapa, 2012).

    Google Scholar 

  81. Sparovek, G. et al. Brazilian agriculture and environmental legislation: Status and future challenges. Environ. Sci. Technol. 4, 6046–6053 (2010).

    Article  Google Scholar 

  82. Angelo, C. Brazil's fund for low-carbon agriculture lies fallow. Nature News http://dx.doi.org/10.1038/nature.2012.11111 (2012).

  83. Galford, G. L., Soares-Filho, B. & Cerri, C. E. P. Opinion piece: Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon. Phil. Trans. R. Soc. B. 368, 20120171 (2013).

    Article  Google Scholar 

  84. Wunder, S. 2007. The efficiency of payments for environmental services in tropical conservation. Conserv. Biol. 21, 48–58 (2007).

    Article  Google Scholar 

  85. Moutinho, P. et al. The emerging REDD+ regime of Brazil. Carbon Manage. 2, 587–602 (2011).

    Article  Google Scholar 

  86. Acemoglu, D. & Robinson, J. Why Nations Fail: The Origins of Power, Prosperity, and Poverty (Crown Business, 2012).

    Google Scholar 

  87. Sen, K. The political dynamics of economic growth. World Dev. 47, 71–86 (2013).

    Article  Google Scholar 

  88. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and NPP in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  89. Atlas of the Atlantic Forest Remnants: 2010–2011 Period (SOS Mata Atlântica & INPE, 2012).

  90. PRODES (INPE, accessed 20 February 2012); http://www.obt.inpe.br/prodes

  91. Indicadores do Desenvolvimento Sustentável – Brasil 2012 (IBGE, 2012).

  92. TerraClass Land-use Database (INPE, accessed 10 September 2013); http://go.nature.com/fIAFXg

  93. Defense Meteorological Satellite Program 2013 (Department of Defense, accessed 10 September 2013); http://go.nature.com/u7b6Os

  94. Margulis, S. Causas do Desmatamento na Amazônia Brasileira (The World Bank, 2003).

    Google Scholar 

  95. Walter, A. et al. Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energy Policy 39, 5703–5716 (2011).

    Article  Google Scholar 

  96. Lapola, D. M. et al. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl Acad. Sci. USA 107, 3388–3393 (2010).

    Article  CAS  Google Scholar 

  97. Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6, 024010 (2011).

    Article  Google Scholar 

  98. Sampaio, E. et al. Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. Forest Ecology and Management 259, 1135–1140 (2010).

    Article  Google Scholar 

  99. Sampaio, E. V. S. B., Araújo, M. S. B. & Sampaio, Y. Propensão à desertificação no semi-árido brasileiro. Rev. Geogr. 22, 67–80 (2005).

    Google Scholar 

  100. Aprova o Zoneamento Agroecológico da Cana-de-açúcar e Determina ao Conselho Monetário Nacional o Estabelecimento de Normas para as Operações de Financiamento ao Setor Sucroalcooleiro, nos Termos do Zoneamento Federal Decree 6.961/2009 (Government of Brazil, 2009).

Download references

Acknowledgements

We thank E.L. Dalla Nora, A.O. Manzi and K.-H. Erb for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.M.L., L.A.M., C.A.P., J.P.H.B.O., M.E.F. and C.A.N. designed the research. All authors contributed to the writing.

Corresponding author

Correspondence to David M. Lapola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapola, D., Martinelli, L., Peres, C. et al. Pervasive transition of the Brazilian land-use system. Nature Clim Change 4, 27–35 (2014). https://doi.org/10.1038/nclimate2056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing