Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Self-reported emissions data are widely used to evaluate corporations’ climate performance, yet concerns exist regarding their credibility. By examining major US companies, researchers find that more than half of them revise, and mainly understate, their emissions data after first report.
Research on climate change requires continued support from funding agencies. Nature Climate Change spoke to experts from different organizations across the world to discuss how funding agencies can better promote future climate research and actions regarding interdisciplinary studies, international collaborations, supporting young scholars and more.
Adaptation to climate change goes beyond the migration–non-migration divide. Families and communities combine mobility with rootedness, drawing on cultural ties, intergenerational learning, and lived knowledge to navigate risks and shape long-term futures.
It is important to understand the combined effects of multiple changes on the ocean. Here the authors use time of emergence to highlight the increases in impacts of individual and compound changes globally from the surface to the deeper ocean, identifying areas most affected.
Interactions between climate change and antimicrobial resistance across terrestrial, aquatic and health systems reveal shared drivers, synergies and trade-offs that shape health and environmental outcomes. This Comment outlines a solutions-oriented research agenda to advance evidence and action that addresses climate change and antimicrobial resistance as interconnected issues.
The authors theoretically delineate the maximal increases in tree growth that can be expected from increases in plant intrinsic water-use efficiency, which increases with rising CO2. They highlight environmental and physiological limits on growth in the context of experimental data.
Measurements of carbon fluxes and wood phenology are used to assess carbon sources from photosynthesis and their sink into woody growth along a thermal gradient. The authors show that stem growth advances slower than photosynthesis per degree Celsius, creating a phenological mismatch for carbon.
The authors consider studies reporting species range shifts and demonstrate a geometric bias in sampling along latitudinal, rather than longitudinal, gradients. This bias may favour the corroboration of shift expectations with warming and mask other patterns and drivers of species movements.
Climate change is expected to lead to higher day-to-day temperature variability in mid- to low latitudes. Here the authors show that extreme day-to-day temperature changes have distinct impacts on human health and become more frequent and intense in mid- to low latitudes with climate change.
Objective assessments indicate that extreme heat is increasing health risks; however, many of the most exposed populations do not perceive extreme heat as risky. This misperception may undermine public awareness of the need for effective cooling strategies, leaving a dangerous blind spot in adaptation and protection.
Climate change threatens biodiversity, but the transfer of genes between species via hybridization can enhance climate resilience. This research demonstrates that hybrid mountain birds show reduced climate vulnerability, highlighting how maintaining natural gene flow can mitigate extinction risks and is crucial for conserving species with narrow environmental tolerances.
The authors couple calculations of historical heatwave intensity at present and future global temperatures with exposure–response functions to quantify mortality from extreme heat events in Europe. They project tens of thousands of excess deaths, with limited attenuation from existing adaptations.
Climate change is altering the strength and position of Southern Ocean westerly winds but the ocean transport is stable. Here the authors use sea surface height to show that a poleward shift of the northern boundary and changing dynamics maintain the circumpolar transport.
Anthropogenic climate change is exacerbating soil moisture droughts globally, but most studies only consider surface layers. Now, a study reveals that global soil moisture droughts are often also found in deeper layers, and that in a warming climate deep soil moisture droughts are projected to become longer lasting and more severe.
In this Progress Article, the authors discuss why longer growing seasons under climate change may or may not increase tree growth. They highlight differences across fields, as well as research gaps, and propose three major open questions to guide future research.
How the conditions in soil layers below the surface change is not well understood. Here the authors assess changes in subsurface soil moisture, finding that these droughts also become more persistent and intense than surface droughts.
The Pacific Decadal Oscillation describes the most important pattern of low-frequency climate variability in the North Pacific. An analysis of sea surface temperatures reveals that, since 2014, the Pacific Decadal Oscillation’s influence has been superseded by that of basin-wide warming, producing novel expressions of ocean variability and unexpected ecological impacts.
As artificial light encroaches upon cities and countryside, natural darkness recedes and circadian rhythms shift in regions worldwide. Now, a study reveals that bright nights are negatively impacting the carbon sinks of ecosystems.
The authors combine light intensity data with eddy covariance observations from 86 sites to show that artificial light at night increases ecosystem respiration and alters carbon exchange, with impacts shaped by diel cycles and seasonal dynamics.