Reviews & Analysis

Filter By:

  • Targeted protein degradation has emerged as a promising approach in drug discovery, harnessing a cell’s intrinsic machinery to eliminate disease-related proteins. Now, a study paves the way to translating this technology into potential anti-mycobacterial therapies, by exploiting the bacterial protein-degradation complex.

    • Delia Preti
    • Valentina Albanese
    • Peggy Carla Raffaella Marconi
    News & Views
  • Reliably identifying ubiquitin ligase interactors and substrates has been a persistent challenge in cellular biology. A breakthrough comes in the form of a potent, selective and cell-active chemical probe, shedding light on the intricate functions of a key regulatory enzyme.

    • Shaoshuai Xie
    • Gang Li
    News & Views
  • Natural ribozymes can cleave RNA and single-stranded DNA (ssDNA) by transesterification or a blend of hydrolytic and transesterification reactions. Now, ribozymes have been discovered that catalyze the hydrolytic cleavage of ssDNA. Similar ribozymes could potentially replace large, immunogenic, protein-based nucleases in gene therapies.

    • Madeleine B. King
    • Audrone Lapinaite
    News & Views
  • Ferroptosis, a cell death mechanism induced by lipid peroxidation, is pivotal in tumor suppression. A recent study shows that tumor repopulating cells evade ferroptosis and develop resistance to therapy via subverting a lipid metabolism enzyme.

    • Yuelong Yan
    • Boyi Gan
    News & Views
  • We present a discovery pipeline integrating chemical fragment screening and time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS). This approach identifies allosteric chemical leads targeting distinct allosteric states of the mitochondrial oxidoreductase apoptosis-inducing factor (AIF). By monitoring kinetic rates of allosteric transition with TR-HT-SAXS, we link fragment structure–activity relationships (SARs) to biomolecular conformation.

    Research Briefing
  • CRISPR–Cas13 systems use single-subunit RNA-guided Cas13 effectors for targeted RNA recognition and cleavage. This Review summarizes the recent advances in understanding the structural and mechanistic aspects of Cas13 systems and the diverse applications of these systems in biotechnology and therapeutics.

    • Hui Yang
    • Dinshaw J. Patel
    Review Article
  • Understanding the role of pyrophosphorylation requires specific analytical strategies to discriminate it from protein phosphorylation. A custom workflow reveals that nucleolar protein pyrophosphorylation in human cells regulates the transcription of ribosomal DNA.

    • Claire E. Eyers
    • Christopher J. Clarke
    News & Views
  • Ribosomally synthesized and post-translationally modified peptide (RiPP) natural products typically rely on substrate recognition through remote protein–protein interaction sites. Now, an atypical dehydratase, whose activity is directed by neighboring azole modifications, has been shown to produce a highly modified peptide hybrid bearing dehydroamino acids, enabling the synthesis of members of the dehydrazole family of RiPPs.

    • Daniel Richter
    • Anna Lisa Vagstad
    News & Views
  • Reprogramming intercellular mechanotransduction and signaling pathways is still challenging. A recent advance uses a plug-and-play DNA nanodevice to allow non-mechanosensitive receptor tyrosine kinase (RTK) to transmit force-induced cellular signals.

    • Ahsan Ausaf Ali
    • Mahmoud Amouzadeh Tabrizi
    • Mingxu You
    News & Views
  • Chemical approaches, such as those that leverage induced proximity, targeted degradation, synthetic gene regulators or protein design offer opportunities to therapeutically target cellular processes that have long been thought of as undruggable. We report on the progress and the potential for transformative collaborations between fields discussed at the 2023 Bringing Chemistry to Medicine symposium at St. Jude Children’s Research Hospital.

    • Caitlin D. Deane
    • Marcus Fischer
    • Anang A. Shelat
    Meeting Report
  • Peptide vaccines use antigenic peptide fragments to induce an immune response but are problematic because of the short half-life of peptides. A study now reports thioamide substitution in the peptide backbone as a strategy to enhance resistance to proteolysis and promote binding to the MHC I complex for T cell activation.

    • Martin Zacharias
    • Sebastian Springer
    News & Views
  • Detection of intracellular lipolysaccharide (LPS) activates an immune response initiated by the non-canonical inflammasome. ATGL has now been identified as a negative regulator of this pathway that dampens inflammation by removing LPS’ acyl chains, preventing the activation of inflammatory caspases and cytokines.

    • Gemma Banister
    • Dave Boucher
    News & Views
  • Chemogenetic profiling can reveal genetic determinants that coordinate phenotypic responses to therapeutics, along with predicting potential pathways of resistance. A new analytical method for evaluating chemogenetic profiles reveals contributions from death-regulatory genes.

    • Jesse D. Gelles
    • Jerry Edward Chipuk
    News & Views
  • BURP-domain proteins belong to an emerging class of autocatalytic copper-containing proteins that modify themselves after synthesis. Now, a report explains how their structure and metal coordination sphere control the installation of crosslinks within the core peptide, and shows how nature leverages mechanistic paradigms to create diversity.

    • Ninian J. Blackburn
    News & Views
  • An integrative approach has now enabled elucidation of the complete biosynthetic pathway of a prominent saponin adjuvant. Reconstruction of the whole biosynthetic pathway in a heterologous host provides new perspectives for the biotechnological supply of this immunostimulant.

    • Vincent Courdavault
    • Nicolas Papon
    News & Views
  • Reprogramming of the genetic code allows the synthesis of proteins using new building blocks, thus opening the door to the development of a wider variety of medicines and biocatalysts; however, it is currently limited to α-amino acids. A new study has now reported the incorporation of β-linked and α,α-disubstituted monomers into a ribosome-synthesized protein.

    • Ya-Ming Hou
    • Yuko Nakano
    News & Views
  • The rate of ATP production and the total mass of enzymes were quantified for both glycolysis and mitochondrial respiration to determine the proteome efficiency of these pathways. Per unit of enzyme mass, mitochondrial respiration generates energy faster than glycolysis and is thus more proteome efficient. Despite being less proteome efficient, constitutive glycolysis comes with the benefit of rendering cells robust to hypoxia.

    Research Briefing
  • Kir4.1 potassium channels expressed in astroglial cells critically regulate extracellular potassium concentration in the brain. A new study reports that blocking the flow of potassium ions into astrocytes by inhibiting Kir4.1 induces rapid-onset antidepressive effects in rodents.

    • Jerod S. Denton
    News & Views
  • Labeling of endogenous proteins with chemical probes is highly desirable for life science studies. The combination of RNA base editing and site-specific incorporation of non-canonical amino acids allows the introduction of small chemical tags into endogenous proteins in living cells.

    • Tomohiro Doura
    • Yuma Matsuoka
    • Shigeki Kiyonaka
    News & Views
  • Inhibitors of KRAS G12C have shown that directly targeting RAS is possible, but G12C is only one of many RAS driver mutations. Covalent targeting of another major variant, G12D, raises hope for treating other groups of patients with KRAS-mutant tumors.

    • Kenneth Westover
    News & Views