Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Computational methods for calculating a protein structure from a given amino acid sequence have revolutionized both our understanding of structural biology and the prediction of protein-binding compounds. This issue features several pieces that explore machine learning approaches for protein structure prediction, benchmarking and evaluation of model quality, and how machine learning algorithms can be used in the drug discovery process.
RAS proteins, central drivers of cancer, appeared ‘undruggable’ for almost 30 years. Here we provide a personal perspective on the effort leading to our initial report of KRASG12C inhibitors in 2013, and the decade of discoveries that followed.
The inaugural CRISPR-based drug Casgevy has been approved by several medical agencies, with other CRISPR-based therapies currently in clinical trials. Although there are technological hurdles to overcome, chemical biology has a vital role in developing recent breakthroughs in base editing, prime editing and epigenetic editing into future treatments.