Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Teaching the design principles of metabolism

Learning metabolism inevitably involves memorizing pathways. The teacher's challenge is to motivate memorization and to help students progress beyond it. To this end, students should be taught a few fundamental chemical reaction mechanisms and how these are repeatedly used to achieve pathway goals. Pathway knowledge should then be reinforced through quantitative problems that emphasize the relevance of metabolism to bioengineering and medicine.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactivity of bonds β to carbonyl.
Figure 2: Example networks for teaching flux balance analysis.
Figure 3: The cancer-associated pyruvate kinase isozyme (PKM2) offers a modern case study for teaching metabolic regulation by isozyme switching, allostery and covalent modification.

References

  1. Riley, M. Microbiol. Rev. 57, 862–952 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Duarte, N.C. et al. Proc. Natl. Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  Google Scholar 

  3. Wargacki, A.J. et al. Science 335, 308–313 (2012).

    Article  CAS  Google Scholar 

  4. Dellomonaco, C., Clomburg, J.M., Miller, E.N. & Gonzalez, R. Nature 476, 355–359 (2011).

    Article  CAS  Google Scholar 

  5. Fiehn, O. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  Google Scholar 

  6. Nicholson, J.K., Connelly, J., Lindon, J.C. & Holmes, E. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    Article  CAS  Google Scholar 

  7. Patti, G.J. et al. Nat. Chem. Biol. 8, 232–234 (2012).

    Article  CAS  Google Scholar 

  8. Lehninger, A.L., Nelson, D.L. & Cox, M.M. Lehninger Principles of Biochemistry 4th edn. (W.H. Freeman, 2005).

    Google Scholar 

  9. Voet, D. & Voet, J.G. Biochemistry 4th edn. (Wiley, 2010).

    Google Scholar 

  10. Garrett, R. & Grisham, C.M. Biochemistry 4th international edn. (Brooks/Cole, 2010).

    Google Scholar 

  11. Berg, J.M., Tymoczko, J.L. & Stryer, L. Biochemistry 6th edn. (W. H. Freeman, 2007).

    Google Scholar 

  12. Vazquez, A., de Menezes, M.A., Barabasi, A.L. & Oltvai, Z.N. PLoS Comput. Biol. 4, e1000195 (2008).

    Article  Google Scholar 

  13. Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels, J.I. Mol. Cell. Biol. 19, 7357–7368 (1999).

    Article  CAS  Google Scholar 

  14. Meléndez-Hevia, E. Biomed. Biochim. Acta 49, 903–916 (1990).

    PubMed  Google Scholar 

  15. Noor, E., Eden, E., Milo, R. & Alon, U. Mol. Cell 39, 809–820 (2010).

    Article  CAS  Google Scholar 

  16. Feist, A.M. & Palsson, B.O. Nat. Biotechnol. 26, 659–667 (2008).

    Article  CAS  Google Scholar 

  17. Ibarra, R.U., Edwards, J.S. & Palsson, B.O. Nature 420, 186–189 (2002).

    Article  CAS  Google Scholar 

  18. Bennett, B.D. et al. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  19. Goyal, S., Yuan, J., Chen, T., Rabinowitz, J.D. & Wingreen, N.S. PLoS Comput. Biol. 6, e1000802 (2010).

    Article  Google Scholar 

  20. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  21. Lustig, R.H., Schmidt, L.A. & Brindis, C.D. Nature 482, 27–29 (2012).

    Article  CAS  Google Scholar 

  22. Christofk, H.R. et al. Nature 452, 230–233 (2008).

    Article  CAS  Google Scholar 

  23. Chen, M., David, C.J. & Manley, J.L. Nat. Struct. Mol. Biol. 19, 346–354 (2012).

    Article  CAS  Google Scholar 

  24. Hitosugi, T. et al. Sci. Signal. 2, ra73 (2009).

    Article  Google Scholar 

  25. Anastasiou, D. et al. Science 334, 1278–1283 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shawn Campagna for help in designing this curriculum, David Botstein for his tireless support of innovative teaching, Bernhard Palsson for guidance teaching flux balance analysis, and NSF CAREER Award MCB-0643859 to J.D.R. for supporting the curriculum development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D Rabinowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinowitz, J., Vastag, L. Teaching the design principles of metabolism. Nat Chem Biol 8, 497–501 (2012). https://doi.org/10.1038/nchembio.969

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing