Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lessons and revelations from biomimetic syntheses

Abstract

Biomimetic synthesis describes the field of organic chemistry that aims to emulate the natural, biosynthetic processes toward natural products. As well as providing insight into how molecules are formed in nature, the benefits of this approach to total synthesis are numerous and extend beyond the gains typical of traditional synthesis. For example, using biosynthetic proposals to design a synthetic route can highlight alternative methods to the desired target. The pursuit of biomimetic syntheses also promotes the development of new reactions to prove or disprove a biosynthetic proposal or to unravel mechanistic implications of a proposed biosynthesis and can lead to the identification of new natural products. Here we look at some recent compelling examples and examine how biomimetic synthesis has led to the discovery of new procedures and principles that would not have been found by other approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seminal biomimetic syntheses.
Figure 2: Biomimetic two-phase synthesis of terpenoids.
Figure 3: Ladder polyethers.
Figure 4: Prenylated alkaloids.
Figure 5: Biosynthetic proposal and synthesis of exiguamine A and B.
Figure 6: Total synthesis of pyrrole-imidazole alkaloids.
Figure 7: Synthesis of the resveratrol polyphenols.
Figure 8: Total synthesis of berkelic acid (77).

Similar content being viewed by others

Stefan Borsley, James M. Gallagher, … Benjamin M. W. Roberts

Elizabeth L. Bell, William Finnigan, … Sabine L. Flitsch

References

  1. Bentley, R. & Bennett, J.W. Constructing polyketides: from Collie to combinatorial biosynthesis. Annu. Rev. Microbiol. 53, 411–446 (1999).

    CAS  PubMed  Google Scholar 

  2. Robinson, R. LXIII.–A synthesis of tropinone. J. Chem. Soc. Trans. 111, 762–768 (1917).

    CAS  Google Scholar 

  3. Breslow, R. Biomimetic chemistry. Chem. Soc. Rev. 1, 553–580 (1972).

    CAS  Google Scholar 

  4. Barton, D.H.R. Reason and Imagination: Reflections on Research in Organic Chemistry: Selected Papers of Derek H.R. Barton. (World Scientific, 1996).

    Google Scholar 

  5. Taylor, S.K. Biosynthetic, biomimetic and related epoxide cyclizations. A review. Org. Prep. Proced. Int. 24, 245–284 (1992).

    CAS  Google Scholar 

  6. Yoder, R.A. & Johnston, J.N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005). An elegant review that puts terpene and steroid biosynthetic research, spanning more than 70 years, into context.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Scholz, U. & Winterfeldt, E. Biomimetic synthesis of alkaloids. Nat. Prod. Rep. 17, 349–366 (2000).

    CAS  PubMed  Google Scholar 

  8. Bulger, P.G., Bagal, S.K. & Marquez, R. Recent advances in biomimetic natural product synthesis. Nat. Prod. Rep. 25, 254–297 (2008).

    CAS  PubMed  Google Scholar 

  9. Brunoldi, E., Luparia, M., Porta, A., Zanoni, G. & Vidari, G. Biomimetic cyclizations of functionalized isoprenoid polyenes: a cornucopia of synthetic opportunities. Curr. Org. Chem. 10, 2259–2282 (2006).

    CAS  Google Scholar 

  10. Beaudry, C.M., Malerich, J.P. & Trauner, D. Biosynthetic and biomimetic electrocyclizations. Chem. Rev. 105, 4757–4778 (2005).

    CAS  PubMed  Google Scholar 

  11. de la Torre, M.C. & Sierra, M.A. Comments on recent achievements in biomimetic organic synthesis. Angew. Chem. Int. Ed. Engl. 43, 160–181 (2004).

    CAS  PubMed  Google Scholar 

  12. Nicolaou, K.C., Zipkin, R.E. & Petasis, N.A. The endiandric acid cascade. Electrocyclizations in organic synthesis. 3. “Biomimetic” approach to endiandric acids A-G. Synthesis of precursors. J. Am. Chem. Soc. 104, 5558–5560 (1982).

    CAS  Google Scholar 

  13. Nicolaou, K.C., Petasis, N.A. & Zipkin, R.E. The endiandric acid cascade. Electrocyclizations in organic synthesis. 4. “Biomimetic” approach to endiandric acids A-G. Total synthesis and thermal studies. J. Am. Chem. Soc. 104, 5560–5562 (1982).

    CAS  Google Scholar 

  14. Heathcock, C.H. The enchanting alkaloids of Yuzuriha. Angew. Chem. Int. Ed. Engl. 31, 665–681 (1992).

    Google Scholar 

  15. Cherney, E.C. & Baran, P.S. Terpenoid-alkaloids: their biosynthetic twist of fate and total synthesis. Isr. J. Chem. 51, 391–405 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Baldwin, J.E. & Abraham, E. The biosynthesis of penicillins and cephalosporins. Nat. Prod. Rep. 5, 129–145 (1988).

    CAS  PubMed  Google Scholar 

  17. Lane, A.L. & Moore, B.S. A sea of biosynthesis: marine natural products meet the molecular age. Nat. Prod. Rep. 28, 411–428 (2011).

    CAS  PubMed  Google Scholar 

  18. Stork, G. William Summer Johnson, 1913–1995. in Biographical Memoirs vols. 23–24, 182–197 (National Academy Press, 2001).

    Google Scholar 

  19. Davis, E.M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesterpenes and diterpenes. Top. Curr. Chem. 209, 53–95 (2000).

    CAS  Google Scholar 

  20. Maimone, T.J. & Baran, P.S. Modern synthetic efforts toward biologically active terpenes. Nat. Chem. Biol. 3, 396–407 (2007).

    CAS  PubMed  Google Scholar 

  21. Chen, K. & Baran, P.S. Total synthesis of eudesmane terpenes by site-selective C-H oxidations. Nature 459, 824–828 (2009). A report demonstrating a two-phase approach to terpenoid synthesis, modeled on their natural biosynthesis.

    CAS  PubMed  Google Scholar 

  22. Chen, K., Isihara, Y., Galán, M.M. & Baran, P.S. Total synthesis of eudesmane terpenes: cyclase phase. Tetrahedron 66, 4738–4744 (2010).

    CAS  Google Scholar 

  23. Ortiz de Montellano, P.R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Engelin, C.J. & Fristrup, P. Palladium catalyzed allylic C-H alkylation: a mechanistic perspective. Molecules 16, 951–969 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Giri, R., Shi, B.-F., Engle, K.M., Maugel, N. & Yu, J.-Q. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 38, 3242–3272 (2009).

    CAS  PubMed  Google Scholar 

  26. Davies, H.M.L. & Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Newhouse, T. & Baran, P.S. If C-H bonds could talk: selective C-H bond oxidation. Angew. Chem. Int. Ed. Engl. 50, 3362–3374 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, M.S. & White, M.C. A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    CAS  PubMed  Google Scholar 

  29. Isihara, Y. & Baran, P.S. Two-phase terpene total synthesis: historical perspective and application to the Taxol® problem. Synlett 1733–1745 (2010).

  30. Lin, Y.-Y. et al. Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J. Am. Chem. Soc. 103, 6773–6775 (1981).

    CAS  Google Scholar 

  31. Paz, B. et al. Yessotoxins, a group of marine polyether toxins: an overview. Mar. Drugs 6, 73–102 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yasumoto, T., Bagnis, R. & Vernoux, J.P. Toxicity study on surgeonfishes-II. Properties of the principal water-soluble toxin. Nippon Suisan Gakkaishi 42, 359–365 (1976).

    CAS  Google Scholar 

  33. Lewis, R.J. The changing face of ciguatera. Toxicon 39, 97–106 (2001).

    CAS  PubMed  Google Scholar 

  34. Nakanishi, K. The chemistry of brevetoxins: a review. Toxicon 23, 473–479 (1985).

    CAS  PubMed  Google Scholar 

  35. Lee, M.S., Qin, G., Nakanishi, K. & Zagorski, M.G. Biosynthetic studies of brevetoxins, potent neurotoxins produced by the dinoflagellate Gymnodinium breve. J. Am. Chem. Soc. 111, 6234–6241 (1989).

    CAS  Google Scholar 

  36. Shimizu, Y. Biosynthesis and biotransformation of marine invertebrate toxins. in Natural Toxins: Animal, Plant, and Microbial (ed. J.B. Harris) 123 (Clarendon Press, 1986).

    Google Scholar 

  37. Nicolaou, K.C. The total synthesis of brevetoxin B: A twelve-year odyssey in organic synthesis. Angew. Chem. Int. Ed. Engl. 35, 588–607 (1996). In this review, Nicolaou recalls his proposal for the biosynthesis of ladder polyethers, which he included in a proposal to the National Institutes of Health in 1982.

    Google Scholar 

  38. Baldwin, J.E. Rules for ring closure. J. Chem. Soc. Chem. Commun. 734–736 (1976).

  39. Vilotijevic, I. & Jamison, T.F. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew. Chem. Int. Ed. Engl. 48, 5250–5281 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morten, C.J. & Jamison, T.F. Water overcomes methyl group directing effects in epoxide-opening cascades. J. Am. Chem. Soc. 131, 6678–6679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vilotijevic, I. & Jamison, T.F. Synthesis of marine polycyclic polyethers via endo-selective epoxide-opening cascades. Mar. Drugs 8, 763–809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakata, T. Total synthesis of marine polycyclic ethers. Chem. Rev. 105, 4314–4347 (2005).

    CAS  PubMed  Google Scholar 

  43. Alvarez, E., Candenas, M.-L., Pérez, R., Ravelo, J.L. & Martín, J.D. Useful designs in the synthesis of trans-fused polyether toxins. Chem. Rev. 95, 1953–1980 (1995).

    CAS  Google Scholar 

  44. Hoberg, J.O. Synthesis of seven-membered oxacycles. Tetrahedron 54, 12631–12670 (1998).

    CAS  Google Scholar 

  45. Marmsäter, F.P. & West, F.G. New efficient iterative approaches to polycyclic ethers. Chemistry 8, 4346–4353 (2002).

    PubMed  Google Scholar 

  46. Sasaki, M. & Fuwa, H. Convergent strategies for the total synthesis of polycyclic ether marine metabolites. Nat. Prod. Rep. 25, 401–426 (2008).

    CAS  PubMed  Google Scholar 

  47. Vilotijevic, I. & Jamison, T.F. Epoxide-opening cascades promoted by water. Science 317, 1189–1192 (2007). The first endo -selective cascade of polyepoxide openings that did not use directing groups to guide the reaction process.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Morten, C.J., Byers, J.A., Van Dyke, A.R., Vilotijevic, I. & Jamison, T.F. The development of endo-selective epoxide-opening cascades in water. Chem. Soc. Rev. 38, 3175–3192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morten, C.J., Byers, J.A. & Jamison, T.F. Evidence that epoxide-opening cascades promoted by water are stepwise and become faster and more selective after the first cyclization. J. Am. Chem. Soc. 133, 1902–1908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Byers, J.A. & Jamison, T.F. On the synergism between H2O and a tetrahydropyran template in the regioselective cyclization of an epoxy alcohol. J. Am. Chem. Soc. 131, 6383–6385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Heathcock, C.H. Nature knows best: An amazing reaction cascade is uncovered by design and discovery. Proc. Natl. Acad. Sci. USA 93, 14323–14327 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Grube, A., Immel, S., Baran, P.S. & Köck, M. Massadine chloride: a biosynthetic precursor of massadine and stylissadine. Angew. Chem. Int. Ed. Engl. 46, 6721–6724 (2007).

    CAS  PubMed  Google Scholar 

  53. Köck, M., Grube, A., Seiple, I.B. & Baran, P.S. The pursuit of palau'amine. Angew. Chem. Int. Ed. Engl. 46, 6586–6594 (2007).

    PubMed  Google Scholar 

  54. Kato, H. et al. Notoamides A-D: prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew. Chem. Int. Ed. Engl. 46, 2254–2256 (2007).

    CAS  PubMed  Google Scholar 

  55. Grubbs, A.W., Artman, I.G.D., Tsukamoto, S. & Williams, R.M. A concise total synthesis of the notoamides C and D. Angew. Chem. Int. Ed. Engl. 46, 2257–2261 (2007).

    CAS  PubMed  Google Scholar 

  56. Greshock, T.J., Grubbs, A.W., Tsukamoto, S. & Williams, R.M. A concise, biomimetic total synthesis of stephacidin A and notoamide B. Angew. Chem. Int. Ed. Engl. 46, 2262–2265 (2007).

    CAS  PubMed  Google Scholar 

  57. Finefield, J.M. & Williams, R.M. Synthesis of notoamide J: a potentially pivotal intermediate in the biosynthesis of several prenylated indole alkaloids. J. Org. Chem. 75, 2785–2789 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsukamoto, S., Umaoka, H., Yoshikawa, K., Ikeda, T. & Hirota, H. Notoamide O, a structurally unprecendented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, Aspergillus sp. J. Nat. Prod. 73, 1438–1440 (2010).

    CAS  PubMed  Google Scholar 

  59. Tsukamoto, S. et al. Notoamides F-K, prenylated indole alkaloids isolated from a marine-derived Apergillus sp. J. Nat. Prod. 71, 2064–2067 (2008).

    CAS  PubMed  Google Scholar 

  60. Ding, Y. et al. Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp. J. Am. Chem. Soc. 132, 12733–12740 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Artman, G.D. III, Grubbs, A.W. & Williams, R.M. Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. J. Am. Chem. Soc. 129, 6336–6342 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsukamoto, S. et al. Isolation of notoamide E, a key precursor in the biosynthesis of prenylated indole alkaloids in a marine-derived fungus, Aspergillus sp. J. Am. Chem. Soc. 131, 3834–3835 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Greshock, T.J. et al. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B, and the isolation of antipodal (−)-stephacidin A and (+)-notoamide B from Aspergillus versicolor NRRL 35600. Angew. Chem. Int. Ed. Engl. 47, 3573–3577 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsukamoto, S. et al. Isolation of antipodal (−)-versicolamide B and notoamide L-N from a marine-derived Aspergillus sp. Org. Lett. 11, 1297–1300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, R.M. Natural product synthesis: Enabling tools to penetrate Nature's secrets of biogenesis and biomechanism. J. Org. Chem. 76, 4221–4259 (2011). A review that summarizes the biosynthetic investigations of the prenylated alkaloids, highlighting unexpected discoveries and development of synthetic technologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kelly, W.L. Intramolecular cyclizations of polyketide biosynthesis: mining for a “Diels-Alderase”? Org. Biomol. Chem. 6, 4483–4493 (2008).

    CAS  PubMed  Google Scholar 

  67. Pohnert, G. Macrophomate synthase: the first structure of a natural Diels-Alderase. ChemBioChem 4, 713–715 (2003).

    CAS  PubMed  Google Scholar 

  68. Stocking, E.M. & Williams, R.M. Chemistry and biology of biosynthetic Diels-Alder reactions. Angew. Chem. Int. Ed. Engl. 42, 3078–3115 (2003).

    CAS  PubMed  Google Scholar 

  69. Kim, H.J., Ruszczycky, M.W., Choi, S., Liu, Y. & Liu, H. Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473, 109–112 (2011). The first report of an enzyme that exclusively catalyzes a Diels-Alder reaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Campbell, C.D. & Vederas, J.C. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers 93, 755–763 (2010).

    CAS  PubMed  Google Scholar 

  71. Brastianos, H.C. et al. Exiguamine A, an indole-2,3-dioxygenase (IDO) ihibitor isolated from the marine sponge Neopetrosia exigua. J. Am. Chem. Soc. 128, 16046–16047 (2006).

    CAS  PubMed  Google Scholar 

  72. Löb, S., Königsrainer, A., Rammensee, H.-G., Opelz, G. & Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9, 445–452 (2009).

    PubMed  Google Scholar 

  73. Volgraf, M. et al. Biomimetic synthesis of the IDO inhibitors exiguamine A and B. Nat. Chem. Biol. 4, 535–537 (2008). A report on the biomimetic synthesis of exiguamine A and discovery of exiguamine B, which also examines the possible biosynthetic links between the two congeners.

    CAS  PubMed  Google Scholar 

  74. O'Malley, D.P., Li, K., Maue, M., Zografos, A.L. & Baran, P.S. Total synthesis of dimerica pyrrole-imidazole alkaloids: Sceptrin, ageliferin, nagelamide E, oxysceptrin, nakamuric acid, and the axinellamine carbon skeleton. J. Am. Chem. Soc. 129, 4762–4775 (2007).

    CAS  PubMed  Google Scholar 

  75. Walker, R.P., Faulkner, D.J., Van Engen, D. & Clardy, J. Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J. Am. Chem. Soc. 103, 6772–6773 (1981).

    CAS  Google Scholar 

  76. Kinnel, R.B., Gehrken, H.-P. & Scheuer, P.J. Palau'amine: a cytotoxic and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata. J. Am. Chem. Soc. 115, 3376–3377 (1993).

    CAS  Google Scholar 

  77. Kinnel, R.B., Gehrken, H.-P., Swali, R., Skoropowski, G. & Scheuer, P.J. Palau'amine and its congeners: a family of bioactive bisguanidnes from the marine sponge Stylotella aurantium. J. Org. Chem. 63, 3281–3286 (1998).

    CAS  Google Scholar 

  78. Kato, T., Shizuri, Y., Izumida, H., Yokoyama, A. & Endo, M. Styloguanidines, new chitinase inhibitors from the marine Stylotella aurantium. Tetrahedr. Lett. 36, 2133–2136 (1995).

    CAS  Google Scholar 

  79. Kobayashi, J., Suzuki, M. & Tsuda, M. Konbu'acidin A, a new bromopyrrole alkaloid with cdk4 inhibitory activity from Hymeniacidon sponge. Tetrahedron 53, 15681–15684 (1997).

    CAS  Google Scholar 

  80. Kobayashi, H. et al. Carteramine A, an inhibitor of neutrophil chemotaxis, from the marine sponge Stylissa carteri. Tetrahedr. Lett. 48, 2127–2129 (2007).

    CAS  Google Scholar 

  81. Buchanan, M.S. et al. Natural products, stylissadines A and B, specific antagonists of the P2X7 receptor, and important inflammatory target. J. Org. Chem. 72, 2309–2317 (2007).

    CAS  PubMed  Google Scholar 

  82. Buchanan, M.S., Carroll, A.R. & Quinn, R.J. Revised structure of palau'amine. Tetrahedr. Lett. 48, 4573–4574 (2007).

    CAS  Google Scholar 

  83. Grube, A. & Köck, M. Structural assignment of tetrabromostyloguanidine: does the relative configuration of the palau'amines need revision? Angew. Chem. Int. Ed. Engl. 46, 2320–2324 (2007).

    CAS  PubMed  Google Scholar 

  84. Lanman, B.A., Overman, L.E., Paulini, R. & White, N.S. On the structure of palau'amine: evidence for the revised relative configuration from chemical synthesis. J. Am. Chem. Soc. 129, 12896–12900 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Seiple, I.B. et al. Total synthesis of Palau'amine. Angew. Chem. Int. Ed. Engl. 49, 1095–1098 (2010). The first reported total synthesis of the pyrrole-imidzaole alkaloid palau'amine, corroborating the previously reported structure revision.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Al Mourabit, A. & Potier, P. Sponge's molecular diversity through the ambivalent reactivity of 2-aminoimidazole: a universal chemical pathway to the oroidin-based pyrrole-imidazole alkaloids and their palau'amine congeners. European J. Org. Chem. 237–243 (2001).

  87. Hoffmann, H. & Lindel, T. Synthesis of the pyrrole-imidazole alkaloids. Synthesis 2003, 1753–1783 (2003).

    Google Scholar 

  88. Jacquot, D.E.N. & Lindel, T. Challenge palau'amine: current standings. Curr. Org. Chem. 9, 1551–1565 (2005).

    CAS  Google Scholar 

  89. Weinreb, S.M. Some recent advances in the synthesis of polycyclic imidazole-containing marine natural products. Nat. Prod. Rep. 24, 931–948 (2007).

    CAS  PubMed  Google Scholar 

  90. Ma, Z., Lu, J., Wang, X. & Chen, C. Revisiting the Kinnel-Scheuer hypothesis for the biosynthesis of palau'amine. Chem. Commun. (Camb.) 47, 427–429 (2011).

    CAS  Google Scholar 

  91. Kobayashi, J. et al. Ageliferins, potent actomyosin ATPase activators from the Okinawan marine sponge Agelas sp. Tetrahedron 46, 5579–5586 (1990).

    CAS  Google Scholar 

  92. Baran, P.S., O'Malley, D.P. & Zografos, A.L. Sceptrin as a potential biosynthetic precursor to complex pyrrole-imidazole alkaloids: the total synthesis of ageliferin. Angew. Chem. Int. Ed. Engl. 43, 2674–2677 (2004).

    CAS  PubMed  Google Scholar 

  93. Northrop, B.H., O'Malley, D.P., Zografos, A.L., Baran, P.S. & Houk, K.N. Mechanism of the vinylcyclobutane rearrangement of sceptrin to ageliferin and nagelamide E. Angew. Chem. Int. Ed. Engl. 45, 4126–4130 (2006).

    CAS  PubMed  Google Scholar 

  94. Snyder, S.A., Zografos, A.L. & Lin, Y. Total synthesis of resveratrol-based natural products: a chemoselective solution. Angew. Chem. Int. Ed. Engl. 46, 8186–8191 (2007). A report discussing the use of tricyclic synthons for the synthesis of several oligomeric resveratrol natural products.

    CAS  PubMed  Google Scholar 

  95. Snyder, S.A., Breazzano, S.P., Ross, A.G., Lin, Y. & Zografos, A.L. Total synthesis of diverse carbogenic complexity within the resvertrol class from a common building block. J. Am. Chem. Soc. 131, 1753–1765 (2009).

    CAS  PubMed  Google Scholar 

  96. Stierle, A.A., Stierle, D.B. & Kelly, K. Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J. Org. Chem. 71, 5357–5360 (2006).

    CAS  PubMed  Google Scholar 

  97. Buchgraber, P. et al. A synthesis-driven strcuture revision of berkelic acid methyl ester. Angew. Chem. Int. Ed. Engl. 47, 8450–8454 (2008).

    CAS  PubMed  Google Scholar 

  98. Wu, X., Zhou, J. & Snider, B.B. Synthesis of (−)-berkelic acid. Angew. Chem. Int. Ed. 48, 1283–1286 (2009).

    CAS  Google Scholar 

  99. Bender, C.F., Yoshimoto, F.K., Paradise, C.L. & De Brabander, J.K. A concise synthesis of berkelic acid insprired by combining the natural products spicifernin and pulvilloric acid. J. Am. Chem. Soc. 131, 11350–11352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, B. & De Brabander, J.K. Metal-catalyzed regioselective oxy-functionlization of internal alkyne: an entry into ketones, acetals, and spiroketals. Org. Lett. 8, 4907–4910 (2006).

    CAS  PubMed  Google Scholar 

  101. De Brabander, J.K., Liu, B. & Au Qian, M. Au(I)- and Pt(II)-catalyzed cycloetherification of ω-hydroxy propargylic esters. Org. Lett. 10, 2533–2536 (2008).

    CAS  PubMed  Google Scholar 

  102. Dehn, R. et al. Molecular basis of elansolid biosynthesis: evidence for an unprecedented quinone methide initiated intramolecular Diels-Alder cycloaddition/macrolactonization. Angew. Chem. Int. Ed. Engl. 50, 3882–3887 (2011). An example of a quinone methide used as a substrate for a Diels-Alder cycloaddition reaction in natural product synthesis.

    CAS  PubMed  Google Scholar 

  103. Nakajima, H., Fujimoto, H., Matsumoto, R. & Hamasaki, T. Biosynthesis of spiciferone A and spicifernin, bioactive metabolites of the phytopathogenic fungus, Cochliobolus spicifer. J. Org. Chem. 58, 4526–4528 (1993).

    CAS  Google Scholar 

  104. Eschenmoser, A. Vitamin B12: Experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. Engl. 27, 5–39 (1988). A review that describes how the total synthesis of vitamin B12 spurred investigations into its biosynthesis and the origin of the corrin substructure.

    Google Scholar 

Download references

Acknowledgements

We thank J.M. Ready and U.K.Tambar (University of Texas Southwestern) for critical reading of this manuscript. We gratefully acknowledge financial support by the National Institutes of Health (CA 90349) and the Robert A. Welch Foundation (I-1422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef K De Brabander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzak, M., De Brabander, J. Lessons and revelations from biomimetic syntheses. Nat Chem Biol 7, 865–875 (2011). https://doi.org/10.1038/nchembio.709

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing