Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Application guide for omics approaches to cell signaling

Abstract

Research in signal transduction aims to identify the functions of different signaling pathways in physiological and pathological states. Traditional techniques using biochemical, genetic or cell biological approaches have made important contributions to our understanding of cellular signaling. However, the single-gene approach does not take into account the full complexity of cell signaling. With the availability of omics techniques, great progress has been made in understanding signaling networks. Omics approaches can be classified into two categories: 'molecular profiling', including genomic, proteomic, post-translational modification and interactome profiling; and 'molecular perturbation', including genetic and functional perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of signal-transduction cascades.
Figure 2: Molecular profiling by MS-based proteomics methods.
Figure 3: Molecular profiling using PPI approaches.
Figure 4: Molecular perturbation methods.

Similar content being viewed by others

References

  1. Olsen, J.V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 12, 3444–3452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Serber, Z. & Ferrell, J.E. Jr. Tuning bulk electrostatics to regulate protein function. Cell 128, 441–444 (2007).

    CAS  PubMed  Google Scholar 

  3. Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    CAS  PubMed  Google Scholar 

  4. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    CAS  PubMed  Google Scholar 

  5. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).

    CAS  PubMed  Google Scholar 

  6. Pawson, T. & Nash, P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027–1047 (2000).

    CAS  PubMed  Google Scholar 

  7. Petschnigg, J., Snider, J. & Stagljar, I. Interactive proteomics research technologies: recent applications and advances. Curr. Opin. Biotechnol. 22, 50–58 (2011).

    CAS  PubMed  Google Scholar 

  8. Teruel, M.N. & Meyer, T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103, 181–184 (2000).

    CAS  PubMed  Google Scholar 

  9. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    CAS  PubMed  Google Scholar 

  10. Berger, B., Peng, J. & Singh, M. Computational solutions for omics data. Nat. Rev. Genet. 14, 333–346 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Joyce, A.R. & Palsson, B.O. The model organism as a system: integrating 'omics' data sets. Nat. Rev. Mol. Cell Biol. 7, 198–210 (2006).

    CAS  PubMed  Google Scholar 

  12. Kolch, W. & Pitt, A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat. Rev. Cancer 10, 618–629 (2010).

    CAS  PubMed  Google Scholar 

  13. Kristensen, V.N. et al. Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14, 299–313 (2014).

    CAS  PubMed  Google Scholar 

  14. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    CAS  PubMed  Google Scholar 

  15. Ong, S.E. & Mann, M. Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005).

    CAS  PubMed  Google Scholar 

  16. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. Bisson, N. et al. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat. Biotechnol. 29, 653–658 (2011).

    CAS  PubMed  Google Scholar 

  18. Zheng, Y. et al. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499, 166–171 (2013). Together with the paper by Bisson et al ., this study analyzes the signaling complexes proximal to EGFR during EGF signaling with SRM. It reveals the dynamics of different complexes, which play distinct roles in EGF signaling.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gillet, L.C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Collins, B.C. et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat. Methods 10, 1246–1253 (2013). This is the first successful example of the use of SWATH to address a biological question. It reveals the dynamics of 14-3-3 protein complexes in response to IGF1 stimulation.

    CAS  PubMed  Google Scholar 

  21. Lambert, J.P. et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat. Methods 10, 1239–1245 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bandura, D.R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    CAS  PubMed  Google Scholar 

  23. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011). This describes an interesting application of mass cytometry to simultaneously characterize a single cell with 34 parameters.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nomura, D.K., Dix, M.M. & Cravatt, B.F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 10, 630–638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    CAS  PubMed  Google Scholar 

  27. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011).

    CAS  PubMed  Google Scholar 

  28. Huber, K.V. et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508, 222–227 (2014). An excellent example of the use of chemoproteomics for target identification and drug discovery. MTH1 was identified as the target for the antitumor small molecule SCH51344, and the ( S ) enantiomer of crizotinib was identified as a selective inhibitor of MTH1.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Daub, H. et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31, 438–448 (2008).

    CAS  PubMed  Google Scholar 

  30. Duncan, J.S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012). This study uses the CCCP chemoproteomics approach to characterize cancer signaling and describes how the signaling network responds to the treatment with a MEK inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Savas, J.N., Stein, B.D., Wu, C.C. & Yates, J.R. III. Mass spectrometry accelerates membrane protein analysis. Trends Biochem. Sci. 36, 388–396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    CAS  PubMed  Google Scholar 

  33. Stefan, E. et al. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc. Natl. Acad. Sci. USA 104, 16916–16921 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wehr, M.C. et al. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3, 985–993 (2006).

    CAS  PubMed  Google Scholar 

  35. Wehrman, T.S. et al. A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions. Proc. Natl. Acad. Sci. USA 103, 19063–19068 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Michnick, S.W., Remy, I., Campbell-Valois, F.X., Vallee-Belisle, A. & Pelletier, J.N. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 328, 208–230 (2000).

    CAS  PubMed  Google Scholar 

  37. Kerppola, T.K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem. Soc. Rev. 38, 2876–2886 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tchekanda, E., Sivanesan, D. & Michnick, S.W. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat. Methods 11, 641–644 (2014). This paper describes the development of a split PCA variant based on a fluorescent infrared protein IFP. This novel PCA is reversible and allows detection of signaling complexes at low expression levels.

    CAS  PubMed  Google Scholar 

  39. Lemmens, I. et al. Heteromeric MAPPIT: a novel strategy to study modification-dependent protein-protein interactions in mammalian cells. Nucleic Acids Res. 31, e75 (2003).

    PubMed  PubMed Central  Google Scholar 

  40. Lemmens, I., Lievens, S., Eyckerman, S. & Tavernier, J. Reverse MAPPIT detects disruptors of protein-protein interactions in human cells. Nat. Protoc. 1, 92–97 (2006).

    CAS  PubMed  Google Scholar 

  41. Lievens, S. et al. KISS, a mammalian in situ protein interaction sensor. Mol. Cell. Proteomics 13, 3332–3342 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Petschnigg, J. et al. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat. Methods 11, 585–592 (2014). Novel split ubiquitin–based PCA variant that allows detection of PPIs of full-length integral membrane proteins under context-dependent conditions, such as interactions that are conferred by phosphorylation, inhibited by drugs or stimulated by hormones or ligands.

    CAS  PubMed  Google Scholar 

  43. Deribe, Y.L. et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal. 2, ra84 (2009).

    PubMed  Google Scholar 

  44. Stagljar, I., Korostensky, C., Johnsson, N. & te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. USA 95, 5187–5192 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ciruela, F. Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr. Opin. Biotechnol. 19, 338–343 (2008).

    CAS  PubMed  Google Scholar 

  46. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    PubMed  Google Scholar 

  47. Gu, G.J. et al. Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation. N. Biotechnol. 30, 144–152 (2013).

    CAS  PubMed  Google Scholar 

  48. Leuchowius, K.J. et al. Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol. Cell. Proteomics 12, 1563–1571 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, M.A. et al. Annotation of human cancers with EGFR signaling-associated protein complexes using proximity ligation assays. Sci. Signal. 8, ra4 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Roux, K.J., Kim, D.I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Couzens, A.L. et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci. Signal. 6, rs15 (2013).

    PubMed  Google Scholar 

  52. Heintze, J., Luft, C. & Ketteler, R. A CRISPR CASe for high-throughput silencing. Front. Genet. 4, 193 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Ketteler, R. On programmed ribosomal frameshifting: the alternative proteomes. Front. Genet. 3, 242 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Seed, B. Developments in expression cloning. Curr. Opin. Biotechnol. 6, 567–573 (1995).

    CAS  PubMed  Google Scholar 

  55. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    CAS  PubMed  Google Scholar 

  58. Mercer, J. et al. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. Cell Reports 2, 1036–1047 (2012).

    CAS  PubMed  Google Scholar 

  59. Marine, S. et al. High-throughput transfection of differentiated primary neurons from rat forebrain. J. Biomol. Screen. 17, 692–696 (2012).

    CAS  PubMed  Google Scholar 

  60. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006). This paper describes the first generation of pooled and arrayed lentiviral shRNA libraries, and enabled genome-wide loss-of-function screens in a variety of cell types.

    CAS  PubMed  Google Scholar 

  61. Hasson, S.A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    CAS  PubMed  Google Scholar 

  63. Franceschini, A. et al. Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proc. Natl. Acad. Sci. USA 111, 4548–4553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jackson, A.L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mohr, S.E., Smith, J.A., Shamu, C.E., Neumuller, R.A. & Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15, 591–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bushman, F.D. et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 5, e1000437 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Snijder, B. et al. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Syst. Biol. 8, 579 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013). First paper to describe the possibility of RNA-programmed genome editing using the CRISPR technology.

    PubMed  PubMed Central  Google Scholar 

  70. Kasap, C., Elemento, O. & Kapoor, T.M. DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat. Chem. Biol. 10, 626–628 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Smurnyy, Y. et al. DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat. Chem. Biol. 10, 623–625 (2014).

    CAS  PubMed  Google Scholar 

  72. Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera Mdel, C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    CAS  PubMed  Google Scholar 

  74. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS  PubMed  Google Scholar 

  75. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  76. Wutz, A. Haploid animal cells. Development 141, 1423–1426 (2014).

    CAS  PubMed  Google Scholar 

  77. Kaufman, C.K., White, R.M. & Zon, L. Chemical genetic screening in the zebrafish embryo. Nat. Protoc. 4, 1422–1432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Specht, K.M. & Shokat, K.M. The emerging power of chemical genetics. Curr. Opin. Cell Biol. 14, 155–159 (2002).

    CAS  PubMed  Google Scholar 

  79. Alaimo, P.J., Shogren-Knaak, M.A. & Shokat, K.M. Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol. 5, 360–367 (2001).

    CAS  PubMed  Google Scholar 

  80. Muellner, M.K. et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol. 7, 787–793 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Banko, M.R. et al. Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 44, 878–892 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kokel, D. et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat. Chem. Biol. 6, 231–237 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gonsalves, F.C. et al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc. Natl. Acad. Sci. USA 108, 5954–5963 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weidle, U.H., Auer, J., Brinkmann, U., Georges, G. & Tiefenthaler, G. The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genomics Proteomics 10, 155–168 (2013).

    CAS  PubMed  Google Scholar 

  85. Koide, A., Wojcik, J., Gilbreth, R.N., Hoey, R.J. & Koide, S. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. J. Mol. Biol. 415, 393–405 (2012).

    CAS  PubMed  Google Scholar 

  86. Grebien, F. et al. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 147, 306–319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Deininger, M., Buchdunger, E. & Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005).

    CAS  PubMed  Google Scholar 

  88. Jabbour, E., Hochhaus, A., Cortes, J., La Rosee, P. & Kantarjian, H.M. Choosing the best treatment strategy for chronic myeloid leukemia patients resistant to imatinib: weighing the efficacy and safety of individual drugs with BCR-ABL mutations and patient history. Leukemia 24, 6–12 (2010).

    CAS  PubMed  Google Scholar 

  89. Sha, F. et al. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Proc. Natl. Acad. Sci. USA 110, 14924–14929 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Campbell, S.J. & Jackson, R.M. Diversity in the SH2 domain family phosphotyrosyl peptide binding site. Protein Eng. 16, 217–227 (2003).

    CAS  PubMed  Google Scholar 

  91. Wojcik, J. et al. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tiede, C. et al. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng. Des. Sel. 27, 145–155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Taylor, I.W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 27, 199–204 (2009).

    CAS  PubMed  Google Scholar 

  94. Braun, P. et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 6, 91–97 (2009).

    CAS  PubMed  Google Scholar 

  95. Hart, T., Brown, K.R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Zuzuarregui, A. et al. M-Track: detecting short-lived protein-protein interactions in vivo. Nat. Methods 9, 594–596 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Reports 8, 1583–1594 (2014).

    CAS  PubMed  Google Scholar 

  98. Lemmon, M.A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lefkowitz, R.J. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25, 413–422 (2004).

    CAS  PubMed  Google Scholar 

  100. Newton, K. & Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4, a006049 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Riley and J. Snider for valuable comments on this manuscript. Work in the Stagljar laboratory is supported by grants from the CQDM/OCE Explore Program, Ontario Genomics Institute, Canadian Cystic Fibrosis Foundation, Canadian Cancer Society, Pancreatic Cancer Canada and University Health Network. R.K. is supported by UK Medical Research Council core funding to the MRC-UCL University Unit (Ref. MC_EX_G0800785) and a Biotechnology and Biological Sciences Research Council New Investigator Award (BB/JO/5581/1). J.P. is supported by an EC–Marie Curie International Incoming Fellowship (FP7-PEOPLE-2013-IIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Stagljar.

Ethics declarations

Competing interests

A Provisional Patent application was filed on 10 June 2013 with the US Patent and Trademark Office, Application number 61/833,304, that was subsequently converted to a PCT application. The PCT application has been given international application number PCT/CA2014/050539, filed 10 June 2014. The intellectual property has been assigned to the University of Toronto, and its commercialization is being managed by the university's Innovations and Partnership Office.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Petschnigg, J., Ketteler, R. et al. Application guide for omics approaches to cell signaling. Nat Chem Biol 11, 387–397 (2015). https://doi.org/10.1038/nchembio.1809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1809

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing