Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models

Abstract

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification, characterization and optimization of diversity high-throughput screening (HTS) hit to a potent and selective inhibitor of PRMT5.
Figure 2: Characterization of EPZ015666 binding mode using X-ray crystallography and surface plasmon resonance.
Figure 3: Effects of EPZ015666 and control compound 3 on cellular target inhibition as determined by SMDA western blot and CETSA.
Figure 4: EPZ015666 effects on in vitro cellular proliferation and in vivo antitumor activity in MCL cell lines and xenografts in SCID mice.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Chung, J. et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J. Biol. Chem. 288, 35534–35547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, L., Pal, S. & Sif, S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol. Cell. Biol. 28, 6262–6277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pal, S. et al. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 26, 3558–3569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wei, T.-Y.W. et al. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci. 103, 1640–1650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Powers, M.A., Fay, M.M., Factor, R.E., Welm, A.L. & Ullman, K.S. Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res. 71, 5579–5587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho, E.C. et al. Arginine methylation controls growth regulation by E2F1. EMBO J. 31, 1785–1797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pal, S., Vishwanath, S.N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630–9645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karkhanis, V., Hu, Y.-J., Baiocchi, R.A., Imbalzano, A.N. & Sif, S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem. Sci. 36, 633–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pollack, B.P. et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem. 274, 31531–31542 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wolf, S.S. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell. Mol. Life Sci. 66, 2109–2121 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, Y. et al. PRMT9 is a Type II methyltransferase that methylates the splicing factor SAP145. Nat. Commun. doi:10.1038/ncomms7428 (2015).

  12. Boisvert, F.-M., Côté, J., Boulanger, M.-C. & Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2, 1319–1330 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Dhar, S. et al. Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci. Rep. 3, 1311 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gonsalvez, G.B. et al. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J. Cell Biol. 178, 733–740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Friesen, W.J. et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. 21, 8289–8300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meister, G. et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11, 1990–1994 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, D. et al. Novel 3,5-Bis(bromohydroxybenzylidene)piperidin-4-ones as coactivator-associated arginine methyltransferase 1 inhibitors: enzyme selectivity and cellular activity. J. Med. Chem. 54, 4928–4932 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng, D. et al. Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. 279, 23892–23899 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dowden, J. et al. Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1. Org. Biomol. Chem. 9, 7814–7821 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Huynh, T. et al. Optimization of pyrazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1). Bioorg. Med. Chem. Lett. 19, 2924–2927 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Purandare, A.V. et al. Pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg. Med. Chem. Lett. 18, 4438–4441 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Therrien, E. et al. 1,2-Diamines as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg. Med. Chem. Lett. 19, 6725–6732 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Wan, H. et al. Benzo[d]imidazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1)—Hit to Lead studies. Bioorg. Med. Chem. Lett. 19, 5063–5066 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, F. et al. Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J. Med. Chem. 56, 2110–2124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Obianyo, O. et al. A chloroacetamidine-based inactivator of protein arginine methyltransferase 1: design, synthesis, and in vitro and in vivo evaluation. ChemBioChem 11, 1219–1223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smil, D. et al. Discovery of a dual PRMT5–PRMT7 inhibitor. ACS Med. Chem. Lett. 10.1021/ml500467h (2015).

  27. Alinari, L. et al. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 10.1182/blood-2014-12-619783 (2015).

  28. Kaniskan, H.Ü. et al. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew. Chem. Int. Ed. Engl. 10.1002/anie.201412154 (2015).

  29. Copeland, R.A. Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists 2nd edn. (John Wiley & Sons, 2013).

  30. Baell, J.B. & Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Sneeringer, C.J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl. Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lor, L.A. et al. A simple assay for detection of small-molecule redox activity. J. Biomol. Screen. 12, 881–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, M., Xu, R.-M. & Thompson, P.R. Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5. Biochemistry 52, 5430–5440 (2013).

    Article  PubMed  Google Scholar 

  34. Antonysamy, S. et al. Crystal structure of the human PRMT5:MEP50 complex. Proc. Natl. Acad. Sci. USA 109, 17960–17965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, L. et al. Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc. Natl. Acad. Sci. USA 108, 20538–20543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dougherty, D.A. The cation-p interaction. Acc. Chem. Res. 46, 885–893 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    PubMed  Google Scholar 

  38. Daigle, S.R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knutson, S.K. et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol. Cancer Ther. 13, 842–854 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Knutson, S.K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Aggarwal, P. et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 18, 329–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCurdy, A., Jimenez, L., Stauffer, D.A. & Dougherty, D.A. Biomimetic catalysis of SN2 reactions through cation-.pi. interactions. The role of polarizability in catalysis. J. Am. Chem. Soc. 114, 10314–10321 (1992).

    Article  CAS  Google Scholar 

  43. Wasilko, D. Titerless infected-cells preservation and scale-up. BioProcessing Journal 5, 29–32 (2006).

    Article  Google Scholar 

  44. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology: Macromolecular Crystallography, Part A, Vol. 276 (eds Carter, C.W. Jr. & Sweet, R.) Ch. 19 (Academic Press, 1997).

  47. Schüttelkopf, A.W. & van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  PubMed  Google Scholar 

  48. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karlsson, R., Katsamba, P.S., Nordin, H., Pol, E. & Myszka, D.G. Analyzing a kinetic titration series using affinity biosensors. Anal. Biochem. 349, 136–147 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge team members from Epizyme, Inc. (E.C.-P., K.G.K., C.R.M., P.A.B.-S., T.J.W., L.D.J., N.R., M.J.M., L.J., S.L.J., K.A.W., T.L., K.S., S.A.R., A.R., M.P.S., N.J.W., R.M.P., J.J.S., M.P.M., R.A.C., R.C. and K.W.D.) and GlaxoSmithKline (O.B., M.P., T.F.H., K.N., K.P.O., K.T.G. and R.K.) for their contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.W.D., M.J.M. and R.C. designed compounds. L.J. and P.A.B.-S. performed X-ray crystallography and produced X-ray protein. M.P., T.F.H., K.N., K.P.O. and K.T.G. made the initial protein for biochemistry. E.C.-P., K.G.K., T.L. and L.D.J. performed in vitro methyl mark and proliferation studies. N.R. and N.J.W. performed ADME pharmacokinetics studies. E.C.-P., K.G.K., R.M.P. and K.A.W. ran in vivo studies. C.R.M. and T.J.W. ran biochemical and SPR studies. K.W.D., E.C.-P., K.G.K., S.L.J., M.P.S., M.P.M., R.A.C., O.B., R.K., N.J.W., N.R., K.S., J.J.S., R.C., A.R. and S.A.R. designed studies and interpreted results. K.W.D., E.C.-P., K.G.K., T.J.W. and P.A.B.-S. wrote the paper.

Corresponding author

Correspondence to Kenneth W Duncan.

Ethics declarations

Competing interests

E.C.-P., K.G.K., C.R.M., P.A.B.-S., T.J.W., L.D.J., N.R., L.J., S.L.J., K.A.W., T.L., K.S., S.A.R., A.R., M.P.S., N.J.W., R.M.P., J.J.S., M.P.M., R.A.C., R.C. and K.W.D. were employees of Epizyme, Inc. at the time of the studies. O.B., M.P., T.F.H., K.N., K.P.O., K.T.G. and R.K. were employees of GSK at the time of the studies. M.J.M. is a consultant for Epizyme, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1-23, Supplementary Tables 1-3 and Supplementary Note. (PDF 4892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan-Penebre, E., Kuplast, K., Majer, C. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11, 432–437 (2015). https://doi.org/10.1038/nchembio.1810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1810

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer