Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent multidrug-resistant pathogens worldwide, exhibiting increasing resistance to the latest antibiotic therapies. Here we show that the triple β-lactam combination meropenem-piperacillin-tazobactam (ME/PI/TZ) acts synergistically and is bactericidal against MRSA subspecies N315 and 72 other clinical MRSA isolates in vitro and clears MRSA N315 infection in a mouse model. ME/PI/TZ suppresses evolution of resistance in MRSA via reciprocal collateral sensitivity of its constituents. We demonstrate that these activities also extend to other carbapenem-penicillin–β-lactamase inhibitor combinations. ME/PI/TZ circumvents the tight regulation of the mec and bla operons in MRSA, the basis for inducible resistance to β-lactam antibiotics. Furthermore, ME/PI/TZ subverts the function of penicillin-binding protein-2a (PBP2a) via allostery, which we propose as the mechanism for both synergy and collateral sensitivity. Showing in vivo activity similar to that of linezolid, ME/PI/TZ demonstrates that combinations of older β-lactam antibiotics could be effective against MRSA infections in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D-checkerboard synergy determination showing isoboles of MIC and in vitro growth in single-, double- or triple-drug conditions for ME/PI/TZ.
Figure 2: Change in growth rates of MRSA N315 over time when challenged with antibacterial combinations.
Figure 3: Collateral sensitivities underlie suppression of adaptation to antibacterial combinations in MRSA N315.
Figure 4: Genomic evidence for mechanisms of synergy and collateral sensitivity.
Figure 5: Efficacy of ME/PI/TZ treatment in a neutropenic mouse peritonitis model of MRSA N315.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

Referenced accessions

NCBI Reference Sequence

References

  1. Walsh, T.R., Weeks, J., Livermore, D.M. & Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. (2011).

  2. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuda, C.C.S., Fisher, J.F. & Mobashery, S. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci. 62, 2617–2633 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Chambers, H.F. & Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malouin, F. & Bryan, L.E. Modification of penicillin-binding proteins of β-lactam resistance. Antimicrob. Agents Chemother. 30, 1–5 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuda, C., Suvorov, M., Vakulenko, S.B. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 40802–40806 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Fuda, C. et al. Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J. Am. Chem. Soc. 127, 2056–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Otero, L.H., Rojas-Altuve, A., Llarrull, L.I., Carrasco-López, C. & Kumarasiri, M. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 110, 16808–16813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villegas-Estrada, A., Lee, M., Hesek, D., Vakulenko, S.B. & Mobashery, S. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA β-lactam antibiotics. J. Am. Chem. Soc. 130, 9212–9213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Long, S.W. et al. PBP2a mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 58, 6668–6674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu, B., Kelesidis, T., Tsiodras, S., Hindler, J. & Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 68, 4–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. van Hal, S.J., Paterson, D.L. & Gosbell, I.B. Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient-a review of the literature. Eur. J. Clin. Microbiol. Infect. Dis. 30, 603–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Arias, C.A. & Murray, B.E. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N. Engl. J. Med. 360, 439–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Bhusal, Y., Shiohira, C.M. & Yamane, N. Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 26, 292–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Sjölund, M., Wreiber, K., Andersson, D.I., Blaser, M. & Engstrand, L. Long-term persistence of resistant enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann. Intern. Med. 139, 483–487 (2003).

    Article  PubMed  Google Scholar 

  16. Tupin, A. et al. Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. Int. J. Antimicrob. Agents 35, 519–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2012).

    Article  CAS  Google Scholar 

  18. Fischbach, M.A. & Walsh, C.T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zimmermann, G.R., Lehár, J. & Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Hegreness, M., Shoresh, N., Damian, D., Hartl, D.L. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl. Acad. Sci. USA 105, 13977–13981 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lázár, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imamovic, L. & Sommer, M.O.A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Boucher, H.W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    Article  PubMed  Google Scholar 

  24. Rice, L.B. Antimicrobial resistance in Gram-positive bacteria. Am. J. Infect. Control 34, S11–S19 (2006).

    Article  PubMed  Google Scholar 

  25. Waxman, D.J. & Strominger, J.L. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, S.H. et al. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem. Biol. 18, 1379–1389 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Koga, T. et al. Affinity of Tomopenem (CS-023) for penicillin-binding proteins in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53, 1238–1241 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, Y., Bhachech, N. & Bush, K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by β-lactamases. J. Antimicrob. Chemother. 35, 75–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Campbell, E.M. & Chao, L. A population model evaluating the consequences of the evolution of double-resistance and tradeoffs on the benefits of two-drug antibiotic treatments. PLoS ONE 9, e86971 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Munck, C., Gumpert, H.K., Wallin, A.I.N., Wang, H.H. & Sommer, M.O.A. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 6, 262ra156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuroda, M. et al. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Goldstein, F. et al. Identification and phenotypic characterization of a β-lactam-dependent, methicillin-resistant Staphylococcus aureus strain. Antimicrob. Agents Chemother. 51, 2514–2522 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arêde, P., Ministro, J. & Oliveira, D.C. Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the MecI-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA. Antimicrob. Agents Chemother. 57, 3037–3045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berenbaum, M.C. What is synergy? Pharmacol. Rev. 41, 93–141 (1989).

    CAS  PubMed  Google Scholar 

  35. Saiman, L. Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: 'the motion for'. Paediatr. Respir. Rev. 8, 249–255 (2007).

    Article  PubMed  Google Scholar 

  36. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing (document no. M100-S19) (CLSI, Wayne, Pennsylvania, 2009).

  37. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard (CLSI document M07-A8) (CLSI, Wayne, Pennsylvania, 2009).

  38. Fishovitz, J. et al. Disruption of allosteric response as an unprecedented mechanism of resistance to antibiotics. J. Am. Chem. Soc. 136, 9814–9817 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Somani, P., Freimer, E.H., Gross, M.L. & Higgins, J.T. Pharmacokinetics of imipenem-cilastatin in patients with renal insufficiency undergoing continuous ambulatory peritoneal dialysis. Antimicrob. Agents Chemother. 32, 530–534 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kinzig, M., Brismar, B. & Nord, C.E. Pharmacokinetics and tissue penetration of tazobactam and piperacillin in patients undergoing colorectal surgery. Antimicrob. Agents Chemother. 36, 1997–2004 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stutman, H.R., Welch, D.F., Scribner, R.K. & Marks, M.I. In vitro antimicrobial activity of aztreonam alone and in combination against bacterial isolates from pediatric patients. Antimicrob. Agents Chemother. 25, 212–215 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, S.H. et al. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem. Biol. 18, 1379–1389 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Bouley, R. et al. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J. Am. Chem. Soc. 137, 1738–1741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ankomah, P., Johnson, P.J.T. & Levin, B.R. The pharmaco-, population and evolutionary dynamics of multi-drug therapy: experiments with S. aureus and E. coli and computer simulations. PLoS Pathog. 9, e1003300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sonstein, S.A. & Baldwin, J.N. Loss of the penicillinase plasmid after treatment of Staphylococcus aureus with sodium dodecyl sulfate. J. Bacteriol. 109, 262–265 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hackbarth, C.J. & Chambers, H.F. blaI and blaR1 regulate β-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 37, 1144–1149 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lowy, F.D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111, 1265–1273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blázquez, B. et al. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53, 1548–1550 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Craig, W.A. The pharmacology of meropenem, a new carbapenem antibiotic. Clin. Infect. Dis. 24 (suppl. 2) S266–S275 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. DeRyke, C.A., Banevicius, M.A., Fan, H.W. & Nicolau, D.P. Bactericidal activities of meropenem and ertapenem against extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a neutropenic mouse thigh model. Antimicrob. Agents Chemother. 51, 1481–1486 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai, Y., Wang, R., Pei, F. & Liang, B.-b. Antibacterial activity of allicin alone and in combination with β-lactams against Staphylococcus spp. and Pseudomonas aeruginosa. J. Antibiot. (Tokyo) 60, 335–338 (2007).

    Article  CAS  Google Scholar 

  52. Berenbaum, M.C. A method for testing for synergy with any number of agents. J. Infect. Dis. 137, 122–130 (1978).

    Article  CAS  PubMed  Google Scholar 

  53. NCCLS. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. (NCCLS document no. M26-A) (NCCLS, Wayne, Pennsylvania, 1999).

  54. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ford, C.W. et al. In vivo activities of U-100592 and U-100766, novel oxazolidinone antimicrobial agents, against experimental bacterial infections. Antimicrob. Agents Chemother. 40, 1508–1513 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Mitra for discussions about SNP calling and NGS data analysis; M. Wallace for MRSA SCCmec typing; B. Wang for technical advice on genomic preparations and sequencing; C. Munck, M. Sommer and J. Lehár regarding prior discussions of 23 antibiotics chosen for combinatorial screening; J. Marasa for screening optimization; J. Fries for optimization of plate reader assays; K. Forsberg for discussions on mechanisms of reciprocal collateral sensitivity; T. Crofts for antibiotic structures in figures; and members of G.D.'s lab for helpful general discussion of the project and manuscript. We thank T. Roemer of Merck Research Laboratories for the kind gift of the antisense strains. This work was supported in part by the NIH Director's New Innovator Award, the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under award numbers DP2DK098089 and R01GM099538 to G.D. It is also supported in part by the National Institute of Allergy and Infectious Diseases of the NIH under award numbers AI90818 to M.C. and S.M. and AI104987 to S.M. M.W.P. was supported by the NIGMS Cell and Molecular Biology Training Grant (GM007067). R.B. was supported by T32 GM075762 and by an individual Ruth L. Kirschstein National Research Service Award F31 AI115851 from the NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

P.R.G. designed the study, performed in vitro experiments, analyzed results and wrote the paper. M.W.P. and C.-A.D.B. analyzed results and wrote the paper. R.B. performed in vivo experiments, analyzed results and wrote the paper. A.B. and B.A.B. performed in vitro experiments and analyzed results. M.A.S., W.R.W. and V.A.S. performed in vivo experiments. S.M. and M.C. designed in vivo experiments, analyzed results and wrote the paper. G.D. designed the study, analyzed results and wrote the paper.

Corresponding author

Correspondence to Gautam Dantas.

Ethics declarations

Competing interests

P.R.G., M.W.P., S.M., M.C. and G.D. have submitted provisional US patent application no. 62/190,588 based on the antibiotic combination results described in this study.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–7. (PDF 3947 kb)

Supplementary Data Set 1

In vivo data for ME/PI/TZ, constituent compounds, and controls in neutropenic mice. (XLSX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales, P., Pesesky, M., Bouley, R. et al. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat Chem Biol 11, 855–861 (2015). https://doi.org/10.1038/nchembio.1911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing