Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in fluorescence labeling strategies for dynamic cellular imaging

Abstract

Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein– and bio-orthogonal–based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral properties of chromophore classes found in FPs.
Figure 2: Covalent bio-orthogonal labeling mechanisms.
Figure 3: Bio-orthogonal labeling mechanisms based on reversible binding equilibria.
Figure 4: Methods for labeling RNA biomolecules.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010). An elegant study on the three-dimensional nanostructure of mechanochemical signaling domains using interferometry-based super-resolution imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Toettcher, J.E., Weiner, O.D. & Lim, W.A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013). This article demonstrates the power of fluorescence imaging coupled with optogenetics and proteomics for interrogation of frequency-dependent signal transduction.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hao, N., Budnik, B.A., Gunawardena, J. & O'Shea, E.K. Tunable signal processing through modular control of transcription factor translocation. Science 339, 460–464 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Machacek, M. et al. Coordination of rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    CAS  PubMed  Google Scholar 

  6. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013). A bio-orthogonal–compatible silicon-based small-molecule fluorophore provides excellent contrast in the near-infrared and its use in vivo. This paper demonstrates how optimal probe photophysical properties can enable imaging from live-cell super-resolution to thick and scattering tissue samples.

    PubMed  Google Scholar 

  8. Dean, K.M. et al. Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation. Biophys. J. 101, 961–969 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stennett, E.M.S., Ciuba, M.A. & Levitus, M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 43, 1057–1075 (2014).

    CAS  PubMed  Google Scholar 

  10. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Nienhaus, K. & Nienhaus, G.U. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 43, 1088 (2014).

    CAS  PubMed  Google Scholar 

  13. Sengupta, P., van Engelenburg, S.B. & Lippincott-Schwartz, J. Superresolution imaging of biological systems using photoactivated localization microscopy. Chem. Rev. 114, 3189–3202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomosugi, W. et al. An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat. Methods 6, 351–353 (2009).

    CAS  PubMed  Google Scholar 

  15. Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).

    CAS  PubMed  Google Scholar 

  16. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012). This article demonstrates how the application of careful selection pressures and sophisticated analysis can continue to improve fluorescent protein performance.

    PubMed  Google Scholar 

  17. Shaner, N.C. et al. A bright monomeric green fluorescent protein derived from branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013). A unique computational approach results in the brightest green fluorescent protein yet.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lam, A.J. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9, 1005–1012 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Subach, O.M., Cranfill, P.J., Davidson, M.W. & Verkhusha, V.V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE 6, e28674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shcherbakova, D.M., Hink, M.A., Joosen, L., Gadella, T.W. & Verkhusha, V.V. An orange fluorescent protein with a large stokes shift for single-excitation multicolor FCCS and FRET imaging. J. Am. Chem. Soc. 134, 7913–7923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis, L.M., Lubbeck, J.L., Dean, K.M., Palmer, A.E. & Jimenez, R. Microfluidic cell sorter for use in developing red fluorescent proteins with improved photostability. Lab Chip 13, 2320–2327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lubbeck, J.L., Dean, K.M., Ma, H., Palmer, A.E. & Jimenez, R. Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells. Anal. Chem. 84, 3929–3937 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vegh, R. B. et al. Chromophore photoreduction in red fluorescent proteins is responsible for bleaching and phototoxicity. J. Phys. Chem. B. 118, 4527–4534 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogelsang, J. et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. Engl. 47, 5465–5469 (2008).

    CAS  PubMed  Google Scholar 

  26. Habuchi, S. et al. Evidence for the isomerization and decarboxylation in the photocon-version of the red fluorescent protein DsRed. J. Am. Chem. Soc. 127, 8977–8984 (2005).

    CAS  PubMed  Google Scholar 

  27. Adam, V. et al. Structural basis of X-ray–induced transient photobleaching in a photoactivatable green fluorescent protein. J. Am. Chem. Soc. 131, 18063–18065 (2009).

    CAS  PubMed  Google Scholar 

  28. Konold, P., Regmi, C.K., Chapagain, P.P., Gerstman, B.S. & Jimenez, R. Hydrogen bond flexibility correlates with stokes shift in mPlum variants. J. Phys. Chem. B 118, 2940–2948 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Drobizhev, M., Tillo, S., Makarov, N.S., Hughes, T.E. & Rebane, A. Color hues in red fluorescent proteins are due to internal quadratic stark effect. J. Phys. Chem. B 113, 12860–12864 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Costantini, L.M. & Snapp, E.L. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol. 32, 622–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shemiakina, I.I. et al. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun. 3, 1204 (2012).

    CAS  PubMed  Google Scholar 

  32. Subach, F.V. et al. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states. Proc. Natl. Acad. Sci. USA 106, 21097–21102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Filonov, G.S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Piatkevich, K.D., Subach, F.V. & Verkhusha, V.V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat. Commun. 4, 2153 (2013).

    PubMed  Google Scholar 

  35. Filonov, G.S. & Verkhusha, V.V. A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chem. Biol. 20, 1078–1086 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumagai, A. et al. A bilirubin-inducible fluorescent protein from eel muscle. Cell 153, 1602–1611 (2013).

    CAS  PubMed  Google Scholar 

  37. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

  38. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    CAS  PubMed  Google Scholar 

  39. Gallagher, S.S., Sable, J.E., Sheetz, M.P. & Cornish, V.W. An in vivo covalent TMP-tag based on proximity-induced reactivity. ACS Chem. Biol. 4, 547–556 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tomat, E., Nolan, E.M., Jaworski, J. & Lippard, S.J. Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J. Am. Chem. Soc. 130, 15776–15777 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Srikun, D., Albers, A.E., Nam, C.I., Iavarone, A.T. & Chang, C.J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bannwarth, M. et al. Indo-1 derivatives for local calcium sensing. ACS Chem. Biol. 4, 179–190 (2009).

    CAS  PubMed  Google Scholar 

  43. Prifti, E. et al. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile red. ACS Chem. Biol. 9, 606–612 (2014).

    CAS  PubMed  Google Scholar 

  44. Bojkowska, K. et al. Measuring in vivo protein half-life. Chem. Biol. 18, 805–815 (2011).

    CAS  PubMed  Google Scholar 

  45. Uttamapinant, C. et al. A fluorophore ligase for site-specific protein labeling inside living cells. Proc. Natl. Acad. Sci. USA. 107, 10914–10919 (2010). This article, using an engineered lipoic acid ligase from E. coli that directly couples 7-hydroxycoumarin to a 13-amino-acid peptide, demonstrates intracellular and minimally perturbative labeling of actin, microtubule associated proteins and synaptic membrane proteins in living cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, D.S., Phipps, W.S., Loh, K.H., Howarth, M. & Ting, A.Y. Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells. ACS Nano 6, 11080–11087 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin, B.R., Giepmans, B.N.G., Adams, S.R. & Tsien, R.Y. Mammalian cell based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    CAS  PubMed  Google Scholar 

  49. Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Structural bioinformatics–based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T. & Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 5, 341–343 (2009).

    CAS  PubMed  Google Scholar 

  51. Tamura, T., Kioi, Y., Miki, T., Tsukiji, S. & Hamachi, I. Fluorophore labeling of native FKBP12 by ligand-directed tosyl chemistry allows detection of its molecular interactions in vitro and in living cells. J. Am. Chem. Soc. 135, 6782–6785 (2013).

    CAS  PubMed  Google Scholar 

  52. Song, W., Strack, R.L. & Jaffrey, S.R. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods 10, 873–875 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    CAS  PubMed  Google Scholar 

  55. Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).

    CAS  PubMed  Google Scholar 

  56. Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7–21 (2014).

    CAS  PubMed  Google Scholar 

  57. Brengues, M., Teixeira, D. & Parker, R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486–489 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramaswami, M., Taylor, J.P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    CAS  PubMed  Google Scholar 

  59. Rudkin, G.T. & Stollar, B.D. High resolution detection of DNA-RNA hybrids in situ by direct immunofluorescence. Nature 265, 472–473 (1977).

    CAS  PubMed  Google Scholar 

  60. Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013). This article, using sophisticated reagent delivery, FISH probes based on branched DNA technology and automated image analysis, demonstrates the power of single-molecule genome-wide RNA imaging.

    CAS  PubMed  Google Scholar 

  61. Santangelo, P.J. et al. Single molecule–sensitive probes for imaging RNA in live cells. Nat. Methods 6, 347–349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    CAS  PubMed  Google Scholar 

  63. Bertrand, E. et al. Localization of ash mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    CAS  PubMed  Google Scholar 

  64. Daigle, N. & Ellenberg, J. λN-GFP: an RNA reporter system for live-cell imaging. Nat. Methods 4, 633–636 (2007).

    CAS  PubMed  Google Scholar 

  65. Alcid, E.A. & Jurica, M.S. A protein-based EM label for RNA identifies the location of exons in spliceosomes. Nat. Struct. Mol. Biol. 15, 213–215 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4, 413–419 (2007).

    CAS  PubMed  Google Scholar 

  67. Wilson, C. & Szostak, J.W. Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem. Biol. 5, 609–617 (1998).

    CAS  PubMed  Google Scholar 

  68. Strack, R.L., Disney, M.D. & Jaffrey, S.R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat containing RNA. Nat. Methods 10, 1219–1224 (2013). An RNA aptamer with improved folding and thermodynamic stability, Spinach2, enables dynamic live-cell imaging of 'toxic' RNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, J. et al. Combining SELEX screening and rational design to develop light-up fluorophore-RNA aptamer pairs for RNA tagging. ACS Chem. Biol. 5, 1065–1074 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sunbul, M. & Jäschke, A. Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew. Chem. Int. Ed. Engl. 52, 13401–13404 (2013).

    CAS  PubMed  Google Scholar 

  71. Lux, J., Peña, E.J., Bolze, F., Heinlein, M. & Nicoud, J.-F. Malachite green derivatives for two-photon RNA detection. ChemBioChem 13, 1206–1213 (2012).

    CAS  PubMed  Google Scholar 

  72. Han, K.Y., Leslie, B.J., Fei, J., Zhang, J. & Ha, T. Understanding the photophysics of the Spinach-DFHBI RNA aptamer–fluorogen complex to improve live cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mali, P., Esvelt, K.M. & Church, G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013). A thought-provoking perspective on Cas9-mediated bioengineering.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bogdanove, A.J. & Voytas, D.F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    CAS  PubMed  Google Scholar 

  78. Santiago, Y. et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 5809–5814 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pattanayak, V., Ramirez, C.L., Joung, J.K. & Liu, D.R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods 8, 765–770 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  81. Tang, J., van Panhuys, N., Kastenmüller, W. & Germain, R. The future of immunoimaging-deeper, bigger, more precise, and definitively more colorful. Eur. J. Immunol. 43, 1407–1412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  Google Scholar 

  83. Micheva, K.D., Busse, B., Weiler, N.C., O'Rourke, N. & Smith, S.J. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zrazhevskiy, P. & Gao, X. Quantum dot imaging platform for single-cell molecular profiling. Nat Commun. 4, 1619 (2013).

    PubMed  Google Scholar 

  85. Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).

    CAS  PubMed  Google Scholar 

  86. Wang, G. & Smith, S.J. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens. PLOS Comput. Biol. 8, e1002671 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gorris, H.H. & Wolfbeis, O.S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. Engl. 52, 3584–3600 (2013).

    CAS  PubMed  Google Scholar 

  89. Saar, B.G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385 (2012). New selective-plane microscope with improved resolution interrogates single cells and developing embryos with unprecedented sensitivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS  PubMed  Google Scholar 

  92. Puchner, E.M., Walter, J.M., Kasper, R., Huang, B. & Lim, W.A. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl. Acad. Sci. USA 110, 16015–16020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Quail, D.F. & Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, T., Agrawal, A., Abashin, M., Chau, K.J. & Lezec, H.J. All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013).

    CAS  PubMed  Google Scholar 

  96. Mamin, H.J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E Palmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dean, K., Palmer, A. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol 10, 512–523 (2014). https://doi.org/10.1038/nchembio.1556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing