Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Druggable sensors of the unfolded protein response

Abstract

The inability of cells to properly fold, modify and assemble secretory and transmembrane proteins leads to accumulation of misfolded proteins in the endoplasmic reticulum (ER). Under these conditions of 'ER stress', cell survival depends on homeostatic benefits from an intracellular signaling pathway called the unfolded protein response (UPR). When activated, the UPR induces transcriptional and translational programs that restore ER homeostasis. However, under high-level or chronic ER stress, these adaptive changes ultimately become overshadowed by alternative 'terminal UPR' signals that actively commit cells to degeneration, culminating in programmed cell death. Chronic ER stress and maladaptive UPR signaling are implicated in the etiology and pathogenesis of myriad human diseases. Naturally, this has generated widespread interest in targeting key nodal components of the UPR as therapeutic strategies. Here we summarize the state of this field with emphasis placed on two of the master UPR regulators, PERK and IRE1, which are both capable of being drugged with small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three arms of the UPR.
Figure 2: Adaptive signaling in the UPR.
Figure 3: Domain architecture of IRE1 and PERK.
Figure 4: Terminal signaling in the UPR.
Figure 5: Small-molecule modulators of PERK and IRE1α.
Figure 6: Modes of pharmacological modulation of IRE1a.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Anelli, T. & Sitia, R. Protein quality control in the early secretory pathway. EMBO J. 27, 315–327 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tu, B.P. & Weissman, J.S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341–346 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sevier, C.S. & Kaiser, C.A. Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3, 836–847 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. van Anken, E. & Braakman, I. Versatility of the endoplasmic reticulum protein folding factory. Crit. Rev. Biochem. Mol. Biol. 40, 191–228 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Merksamer, P.I., Trusina, A. & Papa, F.R. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135, 933–947 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, M.H., Ploegh, H.L. & Weissman, J.S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Scheuner, D. & Kaufman, R.J. The unfolded protein response: a pathway that links insulin demand with b-cell failure and diabetes. Endocr. Rev. 29, 317–333 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Anken, E. et al. Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. Proc. Natl. Acad. Sci. USA 106, 17019–17024 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress–mediated diabetes. J. Clin. Invest. 109, 525–532 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, H.M. et al. Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1. J. Virol. 84, 8446–8459 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma, Y. & Hendershot, L.M. ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat. 28, 51–65 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Flamment, M., Hajduch, E., Ferre, P. & Foufelle, F. New insights into ER stress–induced insulin resistance. Trends Endocrinol. Metab. 23, 381–390 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Gestwicki, J.E. & Garza, D. Protein quality control in neurodegenerative disease. Prog. Mol. Biol. Transl. Sci. 107, 327–353 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S. & Kaufman, R.J. The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857–867 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gardner, B.M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Credle, J.J., Finer-Moore, J.S. & Papa, F.R. Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 18773–18784 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. Travers, K.J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum–resident kinase. Nature 397, 271–274 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Tirasophon, W., Welihinda, A.A. & Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X.Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708–5717 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korennykh, A. & Walter, P. Structural basis of the unfolded protein response. Annu. Rev. Cell Dev. Biol. 28, 251–277 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6a and XBP1. Dev. Cell 13, 365–376 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Liu, C.Y., Schroder, M. & Kaufman, R.J. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275, 24881–24885 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Harding, H.P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Lee, K.P. et al. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132, 89–100 (2008) The first crystal structure of the kinase-RNase portion of IRE1. This paper provides a model for how back-to-back dimerization leads to RNase activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, L. et al. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nat. Chem. Biol. 8, 982–989 (2012) This manuscript demonstrates that it is possible to allosterically inhibit IRE1α's RNase activity through its kinase domain with a conformation-selective ATP-competitive ligand.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Korennykh, A.V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009) This study demonstrates that the cytosolic portion of baker's yeast IRE1 is capable of forming an ordered rod-shaped oligomer. The crystal structure of this higher-order assembly and accompanying biophysical studies provide a mechanistic model linking IRE1 autophosphorylation to its RNase activity.

    Article  CAS  PubMed  Google Scholar 

  36. Korennykh, A.V. et al. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC Biol. 9, 48 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. Ali, M.M. et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J. 30, 894–905 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shore, G.C., Papa, F.R. & Oakes, S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. Lu, P.D. et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23, 169–179 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, J.H., Li, H., Zhang, Y., Ron, D. & Walter, P. Divergent effects of PERK and IRE1 signaling on cell viability. PLoS ONE 4, e4170 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y. & Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249–1259 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marciniak, S.J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009) This manuscript showed that endonucleolytic decay of ER-localized mRNAs by IRE1α is linked to apoptosis. Furthermore, it showed that adaptive XBP1 mRNA splicing can be uncoupled from proapoptotic extra-XBP1 mRNA decay using 1NM-PP1–sensitized IRE1α.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hollien, J. & Weissman, J.S. Decay of endoplasmic reticulum–localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Han, D. et al. A kinase inhibitor activates the IRE1α RNase to confer cytoprotection against ER stress. Biochem. Biophys. Res. Commun. 365, 777–783 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. Lin, J.H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Papa, F.R., Zhang, C., Shokat, K. & Walter, P. Bypassing a kinase activity with an ATP-competitive drug. Science 302, 1533–1537 (2003) The first demonstration of the allosteric relationship between the kinase and RNase domains of IRE1. The authors found that an ATP-competitive inhibitor is able to activate IRE1's RNase domain in the absence of autophosphorylation.

    Article  CAS  PubMed  Google Scholar 

  48. Upton, J.P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lerner, A.G. et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000)

    Article  CAS  PubMed  Google Scholar 

  51. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress–induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, C. & Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95–118 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J. & Green, D.R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giam, M., Huang, D.C. & Bouillet, P. BH3-only proteins and their roles in programmed cell death. Oncogene 27, Suppl 1, S128–S136 (2008)

    Article  CAS  PubMed  Google Scholar 

  55. Upton, J.P. et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol. Cell. Biol. 28, 3943–3951 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007)

    CAS  PubMed  Google Scholar 

  57. Li, J., Lee, B. & Lee, A.S. Endoplasmic reticulum stress–induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281, 7260–7270 (2006)

    Article  CAS  PubMed  Google Scholar 

  58. Papa, F.R. Endoplasmic reticulum stress, pancreatic b-cell degeneration, and diabetes. Cold Spring Harb. Perspect. Med. 2, a007666 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10, 98–102 (2004)

    Article  CAS  PubMed  Google Scholar 

  60. Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000)

    Article  CAS  PubMed  Google Scholar 

  61. Delépine, M. et al. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. 25, 406–409 (2000)

    Article  PubMed  Google Scholar 

  62. Reimold, A.M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001)

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, A.H., Heidtman, K., Hotamisligil, G.S. & Glimcher, L.H. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl. Acad. Sci. USA 108, 8885 (2011) This manuscript showed that Xbp1 gene deletion in β cells of the endocrine pancreas caused compensatory IRE1α hyperactivation, leading to endonucleolytic decay of a number of ER-localized mRNAs that are normally needed to maintain β cell–differentiated identity and the ability to process and secrete insulin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harding, H.P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001) This manuscript showed that homozygous Perk gene deletion causes degeneration of several professional secretory tissues, including α cells of the endocrine pancreas, consequently leading to diabetes. Pancreatic islets of Perk−/− mice demonstrated decreased translational attenuation and compensatory IRE1α hyperactivation at baseline.

    Article  CAS  PubMed  Google Scholar 

  66. Ross, C.A. & Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17 (2004)

    Article  PubMed  CAS  Google Scholar 

  67. Taylor, J.P. J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (1991).

    Article  Google Scholar 

  68. Roussel, B.D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105–118 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. Hamos, J.E. et al. Expression of heat shock proteins in Alzheimer's disease. Neurology 41, 345–350 (1991)

    Article  CAS  PubMed  Google Scholar 

  70. Hoozemans, J.J. et al. The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am. J. Pathol. 174, 1241–1251 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Unterberger, U. et al. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J. Neuropathol. Exp. Neurol. 65, 348–357 (2006)

    Article  CAS  PubMed  Google Scholar 

  72. Wang, H.Q. & Takahashi, R. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid. Redox Signal. 9, 553–561 (2007)

    Article  CAS  PubMed  Google Scholar 

  73. Atkin, J.D. et al. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol. Dis. 30, 400–407 (2008)

    Article  CAS  PubMed  Google Scholar 

  74. Holtz, W.A. & O'Malley, K.L. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278, 19367–19377 (2003)

    Article  CAS  PubMed  Google Scholar 

  75. Atkin, J.D. et al. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 281, 30152–30165 (2006)

    Article  CAS  PubMed  Google Scholar 

  76. Kikuchi, H. et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc. Natl. Acad. Sci. USA 103, 6025–6030 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013). This work showed that prion protein replication hyperactivates the UPR, leading to neuronal death. PERK inhibitors attenuated translational shutdown and reduced clinical prion disease in rodents.

    Article  PubMed  CAS  Google Scholar 

  79. Lee, A.S. & Hendershot, L.M. ER stress and cancer. Cancer Biol. Ther. 5, 721–722 (2006)

    Article  CAS  PubMed  Google Scholar 

  80. Koumenis, C. ER stress, hypoxia tolerance and tumor progression. Curr. Mol. Med. 6, 55–69 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. Moenner, M., Pluquet, O., Bouchecareilh, M. & Chevet, E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. Carrasco, D.R. et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11, 349–360 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fernandez, P.M. et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res. Treat. 59, 15–26 (2000)

    Article  CAS  PubMed  Google Scholar 

  84. Shuda, M. et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol. 38, 605–614 (2003)

    Article  CAS  PubMed  Google Scholar 

  85. Song, M.S., Park, Y.K., Lee, J.H. & Park, K. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C–e/ERK/AP-1 signaling cascade. Cancer Res. 61, 8322–8330 (2001).

    CAS  PubMed  Google Scholar 

  86. Chen, X., Ding, Y., Liu, C.G., Mikhail, S. & Yang, C.S. Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis 23, 123–130 (2002)

    Article  CAS  PubMed  Google Scholar 

  87. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Voorhees, P.M. & Orlowski, R.Z. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 46, 189–213 (2006)

    Article  CAS  PubMed  Google Scholar 

  90. Papandreou, I. et al. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gu, J.L. et al. Differentiation induction enhances bortezomib efficacy and overcomes drug resistance in multiple myeloma. Biochem. Biophys. Res. Commun. 420, 644–650 (2012)

    Article  CAS  PubMed  Google Scholar 

  93. Ling, S.C. et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 97, 64–72 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014) This manuscript showed that the IRE1α kinase rheostatically activates the IRE1α RNase domain through self-association, leading to apoptosis past an oligomerization threshold. Furthermore, KIRAs of IRE1 reduce homo-oligomerization, terminal UPR signaling and apoptosis under ER stress; in two animal models of ER stress–induced cell loss, an advanced KIRA, KIRA6, showed therapeutic benefits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leung-Hagesteijn, C. et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24, 289–304 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005)

    Article  CAS  PubMed  Google Scholar 

  98. Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002 (2013) This paper describes the identification of the first-in-class ATP-competitive PERK inhibitor GSK2656157. The authors demonstrate that this potent and selective compound leads to reduced ATF4 and CHOP levels in multiple cell lines and growth inhibition in several tumor xenografts.

    Article  CAS  PubMed  Google Scholar 

  99. Volkmann, K. et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286, 12743–12755 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cross, B.C. et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl. Acad. Sci. USA 109, E869–E878 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sanches, M. et al. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat. Commun. 5, 4202 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grants DP2OD001925 (F.R.P.), RO1DK080955 (F.R.P.), P30DK063720 (F.R.P.), UO1DK089541 (F.R.P.), R01DK100623 (F.R.P. and D.J.M.), R01GM086858 (D.J.M.); the Burroughs Wellcome Foundation (F.R.P.); the Juvenile Diabetes Research Foundation (F.R.P.); the Harrington Discovery Institute Scholar-Innovator Award (F.R.P.); the Alfred P. Sloan Foundation (D.J.M.); and the Camille and Henry Dreyfus Foundation (D.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dustin J Maly or Feroz R Papa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maly, D., Papa, F. Druggable sensors of the unfolded protein response. Nat Chem Biol 10, 892–901 (2014). https://doi.org/10.1038/nchembio.1664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing