Browse Articles

Filter By:

  • Macrocyclic peptides are promising scaffolds for chemical tools and potential therapeutics, but their synthesis is currently difficult. Here, the authors report the characterization of Ulm16, a peptide cyclase of the penicillin-binding protein (PBP)-type class of thioesterases, that catalyzes head-to-tail macrolactamization of nonribosmal peptides of 4–6 amino acids in length.

    • Zachary L. Budimir
    • Rishi S. Patel
    • Elizabeth I. Parkinson
    Article
  • Small molecules and drugs are not homogenously distributed across cells, and are instead enriched in distinct subcellular compartments and membraneless biomolecular condensates. A new study lays out the path to identifying chemical features or ‘rationales’ that confer condensate-selective partitioning of small molecules.

    • Aseem Z. Ansari
    News & Views
  • A workflow integrating tools from bioinformatics, structural biology and synthetic biology has been developed that enables the rapid design of pili-enabled living materials. This approach allows mining of pili-producing nonpathogenic chassis, understanding of the pili structure and assembly, and engineering of pili-enabled living materials in a systematic and sequential manner.

    • Yuanyuan Huang
    • Yanfei Wu
    • Chao Zhong
    Article
  • Efforts to rationally engineer nonribosomal peptide synthetase (NRPS) enzymes have focused on making individual modifications. Here the authors describe a targeted random engineering approach that uses thousands of NRPS domains amplified from the soil metagenome for mass substitution experiments.

    • Sarah R. Messenger
    • Edward M. R. McGuinniety
    • Mark J. Calcott
    Article
  • Cells contain compartments composed of phase-separated protein condensates. We find that these condensates have a unique chemical microenvironment that enriches amphipathic metabolites such as phospholipids. Therefore, condensates are mixtures of proteins, nucleic acids and specific metabolites. The presence of phospholipids and other amphipathic metabolites might enable condensates to facilitate specific metabolic reactions.

    Research Briefing
  • Oxygen sensitivity hampers applications of metal-dependent CO2 reductases. Here, Oliveira et al. describe how an allosteric disulfide bond controls the activity of a CO2 reductase, preventing its physiological reduction during transient O2 exposure and allowing aerobic handling of the enzyme.

    • Ana Rita Oliveira
    • Cristiano Mota
    • Inês A. Cardoso Pereira
    Article
  • Controlled interactions between macromolecules are fundamental regulatory layers. Hijacking these circuits via proximity-inducing small molecules offers many therapeutic opportunities. The organizers, Georg Winter and Cristina Mayor-Ruiz, report on the latest trends in this emerging field discussed at the 39th IRB-BioMed Conference in Barcelona.

    • Georg E. Winter
    • Cristina Mayor-Ruiz
    Meeting Report
  • Here, the authors describe the mechanistic flexibility and substrate promiscuity of the apramycin resistance enzyme ApmA. They identify additional clinical drugs susceptible to modification through a molecular mechanism that diverges from other enzymes within the left-handed β-helix superfamily.

    • Emily Bordeleau
    • Peter J. Stogios
    • Gerard D. Wright
    Article
  • Dumelie et al. asked whether biomolecular phase-separated condensates can establish microenvironments with distinct metabolomes and found that amphipathic lipids are highly enriched in these microenvironments and influence the properties of the condensates.

    • Jason G. Dumelie
    • Qiuying Chen
    • Samie R. Jaffrey
    Article
  • Terpenoids bearing carbon skeletons derived from nonisoprene units are rare and considered noncanonical. Now, a genome-mining study has uncovered previously unknown noncanonical C16 terpenes and their biosynthetic pathways from bacteria. The findings suggest that noncanonical terpenoids are diverse and widespread in nature.

    • Shaonan Liu
    • Darwin Lara
    • Yang Hai
    News & Views