Research articles

Filter by:

  • Robust delivery of proteins into cells is challenging, but it has now been shown that by conjugating arginine-rich cell-penetrating peptides to the surface of cells, proteins containing a cell-penetrating peptide can be delivered efficiently into them. Using a thiol-reactive cell-penetrating peptide enables thiol-containing proteins to be delivered by simple co-incubation.

    • Anselm F. L. Schneider
    • Marina Kithil
    • Christian P. R. Hackenberger
  • The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).

    • Jesse G. Park
    • Brianna A. Collins
    • Jeffrey R. Long
  • Voltage imaging is a powerful technique for studying electrical signalling in neurons. A palette of bright and sensitive voltage indicators has now been developed via enzyme-mediated ligation and Diels–Alder cycloaddition. Among these, a far-red indicator faithfully reports neuronal action potential dynamics with an excitation spectrum orthogonal to optogenetic actuators and green/red-emitting biosensors.

    • Shuzhang Liu
    • Chang Lin
    • Peng Zou
  • A supramolecular three-shell matryoshka-like complex di rects the functionalization of the C60 inner shell to the selective formation of a single trans-3 fullerene bis-adduct. The selectivity with this matryoshka-like approach could be useful for applications where regioisomerically pure C60 bis-adducts have been shown to have superior properties compared with isomer mixtures.

    • Ernest Ubasart
    • Oleg Borodin
    • Xavi Ribas
  • The assembly of a single configuration of an all-carbon quaternary centre within acyclic systems remains a challenge for synthetic chemists. Now, it has been shown that α-all-carbon quaternary centres can be installed in acyclic amides, with excellent levels of absolute stereocontrol, through a radical sulfinyl Truce–Smiles rearrangement.

    • Cédric Hervieu
    • Mariia S. Kirillova
    • Cristina Nevado
  • The overall efficiency of free-triplet generation from intramolecular singlet fission is limited by the efficiency of the dissociation of spatially adjacent triplet pairs. Now, using transient magneto-optical spectroscopy, it has been shown that this limitation can be overcome by promoting a pathway mediated by spatially separated triplet pairs in tetracene trimers and tetramers.

    • Zhiwei Wang
    • Heyuan Liu
    • Min Xiao
  • State-of-the-art industrial methods for transforming P4 into useful phosphorus compounds currently rely on indirect, multi-step strategies. It has now been shown that straightforward one-pot reactions can convert P4 directly into industrially relevant products while requiring only mild conditions and simple, inexpensive reagents—and can also functionalize P4 catalytically.

    • Daniel J. Scott
    • Jose Cammarata
    • Robert Wolf
  • DNA G-quadruplexes can adopt a variety of secondary structures, but it is challenging to identify and classify them quickly. Multivariate analysis of different fluorescence enhancements—generated from an arrayed suite of synthetic hosts and cationic dyes—enables discrimination between G-quadruplex structures of identical length and similar topological types.

    • Junyi Chen
    • Briana L. Hickey
    • Wenwan Zhong
  • Small liposomes of uniform sizes are valuable tools for studying membrane biology and developing drug-delivery vehicles. Now, a DNA-assisted sorting technique has been shown to produce multiple species of monodispersed liposomes with mean diameters below 150 nm in a scalable manner. This approach has enabled the high-resolution analyses of curvature-dependent membrane protein activities.

    • Yang Yang
    • Zhenyong Wu
    • Chenxiang Lin
  • On-surface dehydrogenative bond formation between sp3-hybridized carbon atoms usually requires high temperatures. Now, it has been shown that the higher homologue, silicon, can undergo dehydrogenative polymerization at room temperature on metal surfaces. This process creates well-ordered structures on Au(111) and Cu(111), with different stereoselectivity depending on the metal.

    • Lacheng Liu
    • Henning Klaasen
    • Armido Studer
  • O-methyl nitronate is a rare functional group in natural products. Now, the biosynthetic pathway to O-methyl nitronate, which involves O-methylation of a peptidyl carrier protein (PCP)-tethered nitronate, has been revealed. In some bacteria, the same PCP-tethered nitronate is shown to be oxidized by nitronate monooxygenases to provide nitrite and a PCP-tethered glyoxylate.

    • Hai-Yan He
    • Katherine S. Ryan
  • RNA-cleaving DNA enzymes (DNAzymes) have the potential to function as therapeutic agents by silencing the expression of disease-associated proteins. Xeno-nucleic acids were used to improve the catalytic activity and biological stability of a highly evolved DNAzyme known as 10–23. The enzyme exhibits a robust multiple-turnover activity in cultured mammalian cells.

    • Yajun Wang
    • Kim Nguyen
    • John C. Chaput
  • Molecular catalysts can be made more practical by anchoring them onto electrode surfaces, but such systems are less stable than standard heterogeneous electrocatalysts. Now, supramolecular hosts bound to electrode surfaces have enabled the immobilization of molecular electrocatalysts through host–guest interactions. Desorbed or degraded guest molecules can be replaced with fresh guest molecules, extending their lifetimes.

    • Laurent Sévery
    • Jacek Szczerbiński
    • S. David Tilley
  • Excising hydrogen adjacent to a carbonyl group—one of the most basic and widely employed transformations in organic synthesis—is traditionally achieved using metals and/or stoichiometric oxidants. Now, it has been shown that an electrochemically driven approach removes such requirements, resulting in a more sustainable and easily scalable method with wide substrate scope.

    • Samer Gnaim
    • Yusuke Takahira
    • Phil S. Baran
  • Although many natural products and drug molecules contain N–N linkages, the chemistry of N–N coupling is somewhat underdeveloped. Now, a nitrene-mediated intermolecular N–N coupling of dioxazolones and arylamines that relies on iridium or iron catalysis has been developed. These reactions offer a simple and efficient method for the synthesis of hydrazides from readily available precursors.

    • Hao Wang
    • Hoimin Jung
    • Gong Chen
  • The specificity of human and animal viruses that engage with O-acetylated sialic acids has now been probed using a collection of O-acetylated sialoglycans obtained by diversification of trisaccharide precursors with viral haemagglutinin–esterases. The results revealed host-specific patterns of receptor recognition and showed that human respiratory viruses uniquely employ 9-O-acetylated α2,8-linked disialosides as receptors.

    • Zeshi Li
    • Yifei Lang
    • Geert-Jan Boons
  • Redox mediators are important for improving the rechargeability of metal–air batteries, however, how they affect singlet oxygen formation and hence parasitic chemistry is unclear, hindering strategies for their improvement. Now, the mechanism of mediated peroxide and superoxide oxidation is elucidated, explaining how redox mediators either enhance or suppress singlet oxygen formation.

    • Yann K. Petit
    • Eléonore Mourad
    • Stefan A. Freunberger
  • The post-translational modification O-GlcNAc on amyloid-forming proteins can inhibit their aggregation. Now, it has been shown that O-GlcNAc modification of small heat shock proteins HSP27, αA- and αB-crystallin can increase their anti-amyloid activity and block the amyloid formation of both α-synuclein and Aβ(1–42). A mechanism for this protective effect based on decreased physical interactions is also proposed.

    • Aaron T. Balana
    • Paul M. Levine
    • Matthew R. Pratt
  • Analysis of the thermodynamics of protein–N-glycan interactions perturbed by mutations has revealed an enthalpy–entropy compensation that depends on the electronics of the interacting side chains. Machine-learned and statistical models showed that protein–N-glycan interactions highly correlate with stereoelectronic effects, and that a major part of protein–N-glycan interactions can be explained using the energetic rules of frontier molecular orbital interactions.

    • Maziar S. Ardejani
    • Louis Noodleman
    • Jeffery W. Kelly