Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control over differentiation of a metastable supramolecular assembly in one and two dimensions

Abstract

Molecular self-assembly under kinetic control is expected to yield nanostructures that are inaccessible through the spontaneous thermodynamic process. Moreover, time-dependent evolution, which is reminiscent of biomolecular systems, may occur under such out-of-equilibrium conditions, allowing the synthesis of supramolecular assemblies with enhanced complexities. Here we report on the capacity of a metastable porphyrin supramolecular assembly to differentiate into nanofibre and nanosheet structures. Mechanistic studies of the relationship between the molecular design and pathway complexity in the self-assembly unveiled the energy landscape that governs the unique kinetic behaviour. Based on this understanding, we could control the differentiation phenomena and achieve both one- and two-dimensional living supramolecular polymerization using an identical monomer. Furthermore, we found that the obtained nanostructures are electronically distinct, which illustrates the pathway-dependent material properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular design.
Figure 2: Self-assembly energy landscapes of porphyrin derivatives.
Figure 3: Kinetic and thermodynamic studies of the self-assembly behaviour of 5 and 6.
Figure 4: Differentiation of a metastable supramolecular assembly.
Figure 5: Seeded control over differentiation of a metastable supramolecular assembly.

Similar content being viewed by others

References

  1. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  PubMed  Google Scholar 

  2. Conn, M. M. & Rebek, J. Jr. Self-assembling capsules. Chem. Rev. 97, 1647–1668 (1997).

    CAS  PubMed  Google Scholar 

  3. Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Mastering molecular matter. supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003).

    CAS  Google Scholar 

  4. Van Bommel, K. J. C., Friggeri, A. & Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. 42, 980–999 (2003).

    CAS  Google Scholar 

  5. Niess, F., Duplan, V. & Sauvage, J.-P. Molecular muscles: from species in solution to materials and devices. Chem. Lett. 43, 964–974 (2014).

    CAS  Google Scholar 

  6. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    CAS  PubMed  Google Scholar 

  8. Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009).

    CAS  PubMed  Google Scholar 

  9. Stoddart, J. F. Thither supramolecular chemistry? Nat. Chem. 1, 14–15 (2009).

    CAS  PubMed  Google Scholar 

  10. Nitschke, J. R. Systems chemistry: molecular networks come of age. Nature 462, 736–738 (2009).

    CAS  PubMed  Google Scholar 

  11. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotech. 10, 111–119 (2015).

    CAS  Google Scholar 

  12. Korevaar, P. A., De Greef, T. F. A. & Meijer, E. W. Pathway complexity in π–conjugated materials. Chem. Mater. 26, 576–586 (2014).

    CAS  Google Scholar 

  13. Rybtchinski, B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 5, 6791–6818 (2011).

    CAS  PubMed  Google Scholar 

  14. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    CAS  Google Scholar 

  15. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    CAS  PubMed  Google Scholar 

  16. Ogi, S., Fukui, T., Jue, M. L., Takeuchi, M. & Sugiyasu, K. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design. Angew. Chem. Int. Ed. 53, 14363–14367 (2014).

    CAS  Google Scholar 

  17. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    CAS  PubMed  Google Scholar 

  18. Pal, A. et al. Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew. Chem. Int. Ed. 54, 7852–7856 (2015).

    CAS  Google Scholar 

  19. Robinson, M. E. et al. Length control of supramolecular polymeric nanofibers based on stacked planar platinum(II) complexes by seeded-growth. Chem. Commun. 51, 15921–15924 (2015).

    CAS  Google Scholar 

  20. Lohr, A., Lysetska, M. & Würthner, F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew. Chem. Int. Ed. 44, 5071–5074 (2005).

    CAS  Google Scholar 

  21. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    CAS  PubMed  Google Scholar 

  22. Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300–3307 (2015).

    CAS  PubMed  Google Scholar 

  23. Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nat. Commun. 6, 7009 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Ajayaghosh, A., Varghese, R., Praveen, V. K. & Mahesh, S. Evolution of nano- to microsized spherical assemblies of a short oligo(p-phenylene–ethynylene) into superstructured organogels. Angew. Chem. Int. Ed. 45, 3261–3264 (2006).

    CAS  Google Scholar 

  25. Yagai, S. et al. Unconventional hydrogen-bond-directed hierarchical co-assembly between perylene bisimide and azobenzene-functionalized melamine. Org. Biomol. Chem. 7, 3926–3929 (2009).

    CAS  PubMed  Google Scholar 

  26. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    CAS  PubMed  Google Scholar 

  27. Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    CAS  PubMed  Google Scholar 

  28. Boekhoven, J. et al. Catalytic control over supramolecular gel formation. Nat. Chem. 5, 433–437 (2013).

    CAS  PubMed  Google Scholar 

  29. Boekhoven, J., Hendrisksen, W. E., Koper, G. J. M., Eelkema, R. & Van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  PubMed  Google Scholar 

  30. Kumar, M. et al. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis. Nat. Commun. 5, 5793 (2014).

    CAS  PubMed  Google Scholar 

  31. Tidhar, Y., Weissman, H., Tworowski, D. & Rybtchinski, B. Mechanism of crystalline self-assembly in aqueous medium: a combined cryo-TEM/kinetic study. Chem. Eur. J. 20, 10332–10342 (2014).

    CAS  PubMed  Google Scholar 

  32. Van der Zwaag, D. et al. Kinetic analysis as a tool to distinguish pathway complexity in molecular assembly: an unexpected outcome of structures in competition. J. Am. Chem. Soc. 137, 12677–12688 (2015).

    CAS  PubMed  Google Scholar 

  33. Onogi, S. et al. In situ real-time imaging of self-sorted supramolecular nanofibers. Nat. Chem. 8, 743–752 (2016).

    CAS  PubMed  Google Scholar 

  34. Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2016).

    CAS  PubMed  Google Scholar 

  36. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    CAS  PubMed  Google Scholar 

  37. Chen, Z., Lohr, A., Saha-Möller, C. R. & Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 38, 564–584 (2009).

    CAS  PubMed  Google Scholar 

  38. Zhao, D. & Moore, J. S. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).

    CAS  PubMed  Google Scholar 

  39. Powers, E. T. & Powers, D. L. Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. Biophys. J. 94, 379–391 (2008).

    CAS  PubMed  Google Scholar 

  40. Okada, S. & Segawa, H. Substituent-control exciton in J-aggregates of protonated water-insoluble porphyrins. J. Am. Chem. Soc. 125, 2792–2796 (2003).

    CAS  PubMed  Google Scholar 

  41. Yamaguchi, T., Kimura, T., Matsuda, H. & Aida, T. Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew. Chem. Int. Ed. 43, 6350–6355 (2004).

    CAS  Google Scholar 

  42. Vybornyi, M. et al. Formation of two-dimensional supramolecular polymers by amphiphilic pyrene oligomers. Angew. Chem. Int. Ed. 52, 11488–11493 (2013).

    CAS  Google Scholar 

  43. Yokoyama, S., Hirose, T. & Matsuda, K. Effects of alkyl chain length and hydrogen bonds on the cooperative self-assembly of 2-thienyl-type diarylethenes at a liquid/highly oriented pyrolytic graphite (HOPG) interface. Chem. Eur. J. 21, 13569–13576 (2015).

    CAS  PubMed  Google Scholar 

  44. Ikeda, T. Effect of polymerization on hierarchical self-assembly into nanosheets. Langmuir 31, 667–673 (2015).

    CAS  PubMed  Google Scholar 

  45. Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).

    CAS  PubMed  Google Scholar 

  46. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    CAS  PubMed  Google Scholar 

  47. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    CAS  PubMed  Google Scholar 

  48. Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (no. 15H05483), Scientific Research on Innovative Arias ‘π-System figuration: control of electron and structural dynamism for innovative functions (no. 26102009 and no. 26102011)’, ‘Dynamical ordering of biomolecular systems for creation of integrated functions (No. 16H00787)’ and the Nanotechnology Network Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan. T.F. thanks the Japan Society for the Promotion of Science for a research fellowship for young scientist (16J02156). Financial support from the Sekisui Chemical Grant Program is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

K.S. directed the project. T.F. carried out most of the experimental work except that mentioned below. S.K. contributed to the kinetic analysis of living supramolecular polymerization. S.F. synthesized some of the intermediates. Y.M. conducted powder X-ray diffraction measurement. T.Y. carried out PYS measurements. T.S. and S.S. performed FPTRMC measurements. T.F., M.T. and K.S. discussed the results and co-wrote the manuscript. All the authors commented on the manuscript.

Corresponding authors

Correspondence to Masayuki Takeuchi or Kazunori Sugiyasu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, T., Kawai, S., Fujinuma, S. et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nature Chem 9, 493–499 (2017). https://doi.org/10.1038/nchem.2684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing