Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The colibactin warhead crosslinks DNA

Abstract

Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host–microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide–polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key colibactin pathway (clb)-dependent shunt metabolites.
Figure 2: Colibactin pathway (clb)-dependent molecular network.
Figure 3: Proposed assembly line biosynthetic model for precolibactin A.
Figure 4: The colibactin warhead crosslinks DNA.

Similar content being viewed by others

References

  1. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  Google Scholar 

  2. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  Google Scholar 

  3. Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  Google Scholar 

  4. Schneditz, G. et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl Acad. Sci. USA 111, 13181–13186 (2014).

    Article  CAS  Google Scholar 

  5. Sharon, G. et al. Specialized metabolites from the microbiome in health and disease. Cell Metab. 20, 719–730 (2014).

    Article  CAS  Google Scholar 

  6. Nougayrède, J-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  Google Scholar 

  7. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA 107, 11537–11542 (2010).

    Article  CAS  Google Scholar 

  8. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  Google Scholar 

  9. Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nature Commun. 5, 4724 (2014).

    Article  CAS  Google Scholar 

  10. Olier, M. et al. Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microbes 3, 501–509 (2012).

    Article  Google Scholar 

  11. Marcq, I. et al. The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli. J. Infect. Dis. 210, 285–294 (2014).

    Article  CAS  Google Scholar 

  12. Nowrouzian, F. L. & Oswald, E. Escherichia coli strains with the capacity for long-term persistence in the bowel microbiota carry the potentially genotoxic pks island. Microb. Pathog. 53, 180–182 (2012).

    Article  CAS  Google Scholar 

  13. Secher, T., Samba-Louaka, A., Oswald, E. & Nougayrede, J. P. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS ONE 8, e77157 (2013).

    Article  CAS  Google Scholar 

  14. Cougnoux, A. et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63, 1932–1942 (2014).

    Article  CAS  Google Scholar 

  15. Dalmasso, G., Cougnoux, A., Delmas, J., Darfeuille-Michaud, A. & Bonnet, R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5, 675–680 (2014).

    Article  Google Scholar 

  16. Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA 109, E1743–E1752 (2012).

    Article  CAS  Google Scholar 

  17. Vizcaino, M. I., Engel, P., Trautman, E. & Crawford, J. M. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules. J. Am. Chem. Soc. 136, 9244–9247 (2014).

    Article  CAS  Google Scholar 

  18. Kevany, B. M., Rasko, D. A. & Thomas, M. G. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl. Environ. Microbiol. 75, 1144–1155 (2009).

    Article  CAS  Google Scholar 

  19. Reimer, D., Pos, K. M., Thines, M., Grün, P. & Bode, H. B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nature Chem. Biol. 7, 888–890 (2011).

    Article  CAS  Google Scholar 

  20. Brotherton, C. A. & Balskus, E. P. A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J. Am. Chem. Soc. 135, 3359–3362 (2013).

    Article  CAS  Google Scholar 

  21. Reimer, D. & Bode, H. B. A natural prodrug activation mechanism in the biosynthesis of nonribosomal peptides. Nat. Prod. Rep. 31, 154–159 (2014).

    Article  CAS  Google Scholar 

  22. Dubois, D. et al. ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides. J. Biol. Chem. 286, 35562–35570 (2011).

    Article  CAS  Google Scholar 

  23. Cougnoux, A. et al. Analysis of structure-function relationships in the colibactin-maturating enzyme Clb. Mol. Biol. 424, 203–214 (2012).

    Article  CAS  Google Scholar 

  24. Bian, X. et al. In vivo evidence for a prodrug activation mechanism during colibactin maturation. ChemBioChem 14, 1194–1197 (2013).

    Article  CAS  Google Scholar 

  25. Engel, P., Vizcaino, M. I. & Crawford, J. M. Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthetic pathways. Appl. Environ. Microbiol. 81, 1502–1512 (2015).

    Article  Google Scholar 

  26. Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27, 996–1047 (2010).

    Article  CAS  Google Scholar 

  27. Thibodeaux, C. J., Chang, W. C. & Liu, H. W. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem. Rev. 112, 1681–1709 (2012).

    Article  CAS  Google Scholar 

  28. Zhang, H.-P., Kakeya, H. & Osada, H. Biosynthesis of 1-aminocyclopropane-1-carboxylic acid moiety on cytotrienin A in Streptomyces sp. Tetrahedron Lett. 39, 6947–6948 (1998).

    Article  CAS  Google Scholar 

  29. Ueki, M. et al. Enzymatic generation of the antimetabolite γ,γ-dichloroaminobutyrate by NRPS and mononuclear iron halogenase action in a Streptomycete. Chem. Biol. 13, 1183–1191 (2006).

    Article  CAS  Google Scholar 

  30. Kelly, W. L. et al. Characterization of the aminocarboxycyclopropane-forming enzyme CmaC. Biochemistry 46, 359–368 (2007).

    Article  CAS  Google Scholar 

  31. Chan, Y. A. et al. Hydroxymalonyl-acyl carrier protein (ACP) and aminomalonyl-ACP are two additional type I polyketide synthase extender units. Proc. Natl Acad. Sci. USA 103, 14349–14354 (2006).

    Article  CAS  Google Scholar 

  32. Wessjohann, L. A., Brandt, W. & Thiemann, T. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev. 103, 1625–1648 (2003).

    Article  CAS  Google Scholar 

  33. Hecht, S. M. Bleomycin: new perspectives on the mechanism of action. J. Nat. Prod. 63, 158–168 (2000).

    Article  CAS  Google Scholar 

  34. Wu, W. et al. Solution structure of the hydroperoxide of Co(III) phleomycin complexed with d(CCAGGCCTGG)2: evidence for binding by partial intercalation. Nucleic Acids Res. 30, 4881–4891 (2002).

    Article  CAS  Google Scholar 

  35. MacMillan, K. S. & Boger, D. L. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J. Med. Chem. 52, 5771–5780 (2009).

    Article  CAS  Google Scholar 

  36. Egorova, A. Y. & Timofeeva, Z. Y. Reactivity of pyrrol-2-ones. Chem. Heterocycl. Comp. 40, 1243–1261 (2004).

    Article  CAS  Google Scholar 

  37. Muniandy, P. A., Liu, J., Majumdar, A., Liu, S. T. & Seidman, M. M. DNA interstrand crosslink repair in mammalian cells: step by step. Crit. Rev. Biochem. Mol. Biol. 45, 23–49 (2010).

    Article  CAS  Google Scholar 

  38. Deans, A. J. & West, S. C. DNA interstrand crosslink repair and cancer. Nature Rev. Cancer 11, 467–480 (2011).

    Article  CAS  Google Scholar 

  39. Kunzmann, M. H. & Sieber, S. A. Target analysis of α-alkylidene-γ-butyrolactones in uropathogenic E. coli. Mol. Biosyst. 8, 3061–3067 (2012).

    Article  CAS  Google Scholar 

  40. Cech, T. R. Alkaline gel electrophoresis of deoxyribonucleic acid photoreacted with trimethylpsoralen: rapid and sensitive detection of interstrand cross-links. Biochemistry 20, 1431–1437 (1981).

    Article  CAS  Google Scholar 

  41. Tepe, J. J. & Williams, R. M. DNA cross-linking by a phototriggered dehydromonocrotaline progenitor. J. Am. Chem. Soc. 121, 2951–2955 (1999).

    Article  CAS  Google Scholar 

  42. Kim, J. J., Kim, H. R. & Lee, S. H. Studies on activation mechanism of a mitomycin dimer, 7-N,7′-N′-(1″,2″-dithiepanyl-3″,7″-dimethylenyl)bismitomycin C. Arch. Pharm. Res. 35, 1629–1637 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Tørring, H-B. Park, and E. Trautman for feedback and critically reviewing a preliminary version of the manuscript. This work was supported by the National Institutes of Health (National Cancer Institute grant no. 1DP2CA186575) and the Damon Runyon Cancer Research Foundation (DFS:05-12).

Author information

Authors and Affiliations

Authors

Contributions

M.I.V. and J.M.C. conceived and designed the experiments. M.I.V. performed the experiments. M.I.V. and J.M.C. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Jason M. Crawford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizcaino, M., Crawford, J. The colibactin warhead crosslinks DNA. Nature Chem 7, 411–417 (2015). https://doi.org/10.1038/nchem.2221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2221

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research