Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization

Abstract

In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers—single-layered polymers that form a tiling network in exactly two dimensions—have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 1013 pores cm−2. Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure and preorganization in fantrip monomer crystals.
Figure 2: Overview of the single-crystal-to-single-crystal transformations of fantrip.
Figure 3: X-ray structures of the solvent-free polymer.
Figure 4: Scanning electron microscopy (SEM) micrograph and atomic force microscopy (AFM) image of exfoliated sheets.

Similar content being viewed by others

References

  1. Bhola, R. et al. A two-dimensional polymer from the anthracene dimer and triptycene motifs. J. Am. Chem. Soc. 135, 14134–14141 (2013).

    Article  CAS  Google Scholar 

  2. Ma, R. & Sasaki, T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2010).

    Article  CAS  Google Scholar 

  3. Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011).

    Article  Google Scholar 

  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  6. Jin, C., Lin, F., Suenaga, K. & Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).

    Article  Google Scholar 

  7. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    Article  CAS  Google Scholar 

  8. Humplik, T. et al. Nanostructured materials for water desalination. Nanotechnology 22, 292001 (2011).

    Article  CAS  Google Scholar 

  9. Holt, J. K. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  10. Hinds, B. J. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  Google Scholar 

  11. Striemer, C. C., Gaborski, T. R., McGrath, J. L. & Fauchet, P. M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445, 749–753 (2007).

    Article  CAS  Google Scholar 

  12. Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289–292 (2014).

    Article  CAS  Google Scholar 

  13. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  Google Scholar 

  14. Michl, J. & Magnera, T. F. Two-dimensional supramolecular chemistry with molecular tinkertoys. Proc. Natl Acad. Sci. USA 99, 4788–4792 (2002).

    Article  CAS  Google Scholar 

  15. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nature Chem. 5, 453–465 (2013).

    Article  CAS  Google Scholar 

  16. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    Article  CAS  Google Scholar 

  17. Gee, G. & Rideal, E. K. Reactions in monolayers of drying oils. I. The oxidation of the maleic anhydride compound of β-elaeostearin. Proc. R. Soc. Lond. A 153, 116–128 (1935).

    Article  CAS  Google Scholar 

  18. Kunitake, T. Synthesis of ultrathin polymer films by self assembly. Makromol. Symp. 98, 45–51 (1995).

    Article  CAS  Google Scholar 

  19. Bauer, T. et al. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 50, 7879–7884 (2011).

    Article  CAS  Google Scholar 

  20. Payamyar, P. et al. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv. Mater. 26, 2052–2058 (2013).

    Article  Google Scholar 

  21. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  Google Scholar 

  22. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    Article  CAS  Google Scholar 

  23. Guan, C-Z., Wang, D. & Wan, L-J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

    Article  CAS  Google Scholar 

  24. Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    Article  CAS  Google Scholar 

  25. Kley, C. S. et al. Highly adaptable two-dimensional metal–organic coordination networks on metal surfaces. J. Am. Chem. Soc. 134, 6072–6075 (2012).

    Article  CAS  Google Scholar 

  26. Abel, M., Clair, S., Ourdjini, O., Mossoyan, M. & Porte, L. Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 133, 1203–1205 (2011).

    Article  CAS  Google Scholar 

  27. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    Article  CAS  Google Scholar 

  28. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  29. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chem. 4, 215–220 (2012).

    Article  CAS  Google Scholar 

  30. Takami, T. et al. Periodic structure of a single sheet of a clothlike macromolecule (atomic cloth) studied by scanning tunneling microscopy. Angew. Chem. Int. Ed. Engl. 36, 2755–2757 (1997).

    Article  CAS  Google Scholar 

  31. Miura, A. et al. Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003).

    Article  CAS  Google Scholar 

  32. Beaudoin, D., Maris, T. & Wuest, J. D. Constructing monocrystalline covalent organic networks by polymerization. Nature Chem. 5, 830–834 (2013).

    Article  CAS  Google Scholar 

  33. Berlanga, I. et al. Delamination of layered covalent organic frameworks. Small 7, 1207–1211 (2011).

    Article  CAS  Google Scholar 

  34. Berlanga, I., Mas-Ballesté, R. & Zamora, F. Tuning delamination of layered covalent organic frameworks through structural design. Chem. Commun. 48, 7976–7978 (2012).

    Article  CAS  Google Scholar 

  35. Amo-Ochoa, P. et al. Single layers of a multifunctional laminar Cu(I,II) coordination polymer. Chem. Commun. 46, 3262–3264 (2010).

    Article  CAS  Google Scholar 

  36. Gallego, A. et al. Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv. Mater. 25, 2141–2146 (2013).

    Article  CAS  Google Scholar 

  37. Li, P-Z., Maeda, Y. & Xu, Q. Top-down fabrication of crystalline metal–organic framework nanosheets. Chem. Commun. 47, 8436–8438 (2011).

    Article  CAS  Google Scholar 

  38. Tan, J-C., Saines, P. J., Bithell, E. G. & Cheetham, A. K. Hybrid nanosheets of an inorganic–organic framework material: facile synthesis, structure, and elastic properties. ACS Nano 6, 615–621 (2012).

    Article  CAS  Google Scholar 

  39. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nature Chem. 4, 287–291 (2012).

    Article  CAS  Google Scholar 

  40. Chong, J. H. & MacLachlan, M. J. Iptycenes in supramolecular and materials chemistry. Chem. Soc. Rev. 38, 3301–3315 (2009).

    Article  CAS  Google Scholar 

  41. Bouas-Laurent, H., Desvergne, J-P., Castellan, A. & Lapouyade, R. Photodimerization of anthracenes in fluid solution: structural aspects. Chem. Soc. Rev. 29, 43–55 (2000).

    Article  CAS  Google Scholar 

  42. Becker, H. D. Unimolecular photochemistry of anthracenes. Chem. Rev. 93, 145–172 (1993).

    Article  CAS  Google Scholar 

  43. Sastri, V. R., Schulman, R. & Roberts, D. C. Poly(7,16-dihydroheptacenes): a new type of obligate ladder polymer conformationally restricted to two dimensions. Macromolecules 15, 939–947 (1982).

    Article  CAS  Google Scholar 

  44. Schmidt, G. M. J. Photodimerization in the solid state. Pure Appl. Chem. 27, 647–678 (1971).

    Article  CAS  Google Scholar 

  45. Cho, D. M., Parkin, S. R. & Watson, M. D. Partial fluorination overcomes herringbone crystal packing in small polycyclic aromatics. Org. Lett. 7, 1067–1068 (2005).

    Article  CAS  Google Scholar 

  46. Cozzi, F., Bacchi, S., Filippini, G., Pilati, T. & Gavezzotti, A. Synthesis, X-ray diffraction and computational study of the crystal packing of polycyclic hydrocarbons featuring aromatic and perfluoroaromatic rings condensed in the same molecule: 1,2,3,4-tetrafluoronaphthalene, -anthracene and -phenanthrene. Chem. Eur. J. 13, 7177–7184 (2007).

    Article  CAS  Google Scholar 

  47. Hilton, C. L., Jamison, C. R., Zane, H. K. & King, B. T. A triphenylene-based triptycene with large free volume synthesized by zirconium-mediated biphenylation. J. Org. Chem. 74, 405–407 (2009).

    Article  CAS  Google Scholar 

  48. Gribble, G. W. et al. Dichlorocarbene-induced deamination of naphthalen-1,4-imines and anthracen-9,10-imines. J. Org. Chem. 46, 1025–1026 (1981).

    Article  CAS  Google Scholar 

  49. Gribble, G. W., LeHoullier, C. S., Sibi, M. P. & Allen, R. W. Synthesis and deamination of 7,12-dihydrobenz[a]anthracen-7,12-imines. A new benz[a]anthracene synthesis. J. Org. Chem. 50, 1611–1616 (1985).

    Article  CAS  Google Scholar 

  50. Cohen, M. D. The photochemistry of organic solids. Angew. Chem. Int. Ed. Engl. 14, 386–393 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (CHE-09567702 and IIA-1301726) and the Swiss National Science Foundation (PBEZP2-140092). The authors thank A.D. Schlüter and J. Sakamoto for inspiring discussions and B. Kumar for preliminary synthetic work.

Author information

Authors and Affiliations

Authors

Contributions

P.K. performed the synthesis, photopolymerization and crystallography. V.J.C. and P.K. performed the analysis and interpretation of the X-ray data. D.J.M. performed the exfoliation, and obtained the AFM and SEM images. W.J.W. assisted with the synthesis. B.T.K. designed the monomer and advised on the project.

Corresponding author

Correspondence to Benjamin T. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 12016 kb)

Supplementary information

Crystallographic data for compound fantrip (CIF 9742 kb)

Supplementary information

Crystallographic data for compound fantrip dimer (CIF 7078 kb)

Supplementary information

Crystallographic data for compound poly(fantrip) (CIF 7205 kb)

Supplementary information

Crystallographic data for compound solvent-free poly(fantrip) (CIF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissel, P., Murray, D., Wulftange, W. et al. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nature Chem 6, 774–778 (2014). https://doi.org/10.1038/nchem.2008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing