Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a designed protein cage that self-assembles into a highly porous cube

Abstract

Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here, we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic-level agreement with the designed model, while electron microscopy, native mass spectrometry and small angle X-ray scattering revealed alternative assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will probably require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of the engineered fusion protein and its assembled cage structure.
Figure 2: Crystal structure of the designed cubic cage ATC-HL3.
Figure 3: Native MS of the ATC-HL3 protein cage.
Figure 4: Negatively stained TEM of the ATC-HL3 cage.
Figure 5: SAXS profile of ATC-HL3.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  2. Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).

    Article  CAS  Google Scholar 

  3. Lucon, J. et al. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nature Chem. 4, 781–788 (2012).

    Article  CAS  Google Scholar 

  4. Douglas, T. & Young, M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

    Article  CAS  Google Scholar 

  5. Huard, D. J., Kane, K. M. & Tezcan, F. A. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nature Chem. Biol. 9, 169–176 (2013).

    Article  CAS  Google Scholar 

  6. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  7. King, N. P. & Lai, Y. T. Practical approaches to designing novel protein assemblies. Curr. Opin. Struct. Biol. 23, 632–638 (2013)

    Article  CAS  Google Scholar 

  8. Lai, Y. T., King, N. P. & Yeates, T. O. Principles for designing ordered protein assemblies. Trends Cell Biol. 22, 653–661 (2012).

    Article  CAS  Google Scholar 

  9. Gradisar, H. & Jerala, R. Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J. Nanobiotechnol. 12, 4 (2014).

    Article  Google Scholar 

  10. Gradisar, H. et al. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chem. Biol. 9, 362–366 (2013).

    Article  CAS  Google Scholar 

  11. Fletcher, J. M. et al. Self-assembling cages from coiled-coil peptide modules. Science 340, 595–599 (2013).

    Article  CAS  Google Scholar 

  12. Lanci, C. J. et al. Computational design of a protein crystal. Proc. Natl Acad. Sci. USA 109, 7304–7309 (2012).

    Article  CAS  Google Scholar 

  13. Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl Acad. Sci. USA 98, 2217–2221 (2001).

    Article  CAS  Google Scholar 

  14. Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature Nanotech. 6, 558–562 (2011).

    Article  CAS  Google Scholar 

  15. Lai, Y. T., Cascio, D. & Yeates, T. O. Structure of a 16-nm cage designed by using protein oligomers. Science 336, 1129 (2012).

    Article  CAS  Google Scholar 

  16. Lai, Y. T., Tsai, K. L., Sawaya, M. R., Asturias, F. J. & Yeates, T. O. Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. J. Am. Chem. Soc. 135, 7738–7743 (2013).

    Article  CAS  Google Scholar 

  17. King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012).

    Article  CAS  Google Scholar 

  18. King, N. P. et al. Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103–108 (2014).

    Article  CAS  Google Scholar 

  19. Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    Article  CAS  Google Scholar 

  20. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013)

    Article  Google Scholar 

  21. Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nature Chem. 2, 915–920 (2010).

    Article  CAS  Google Scholar 

  22. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  Google Scholar 

  23. Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotech. 6, 763–772 (2011).

    Article  CAS  Google Scholar 

  24. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  25. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    Article  CAS  Google Scholar 

  26. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotech. 5, 676–682 (2010).

    Article  CAS  Google Scholar 

  27. Pavone, V. et al. Crystal structure of an amphiphilic foldamer reveals a 48-mer assembly comprising a hollow truncated octahedron. Nature Commun. 5, 3581 (2014).

    Article  Google Scholar 

  28. Ueno, T. Porous protein crystals as reaction vessels. Chem. Eur. J. 19, 9096–9102 (2013).

    Article  CAS  Google Scholar 

  29. Molino, N. M. & Wang, S-W. Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol. 28, 75–82 (2014).

    Article  CAS  Google Scholar 

  30. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  31. Walters, M. J. et al. Characterization and crystal structure of Escherichia coli KDPGal aldolase. Bioorg. Med. Chem. 16, 710–720 (2008).

    Article  CAS  Google Scholar 

  32. Saul, F. A. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335, 595–608 (2004).

    Article  CAS  Google Scholar 

  33. Kantardjieff, K. A. & Rupp, B. Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals. Protein Sci. 12, 1865–1871 (2003).

    Article  CAS  Google Scholar 

  34. Rose, P. W. et al. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 41, D475–D482 (2013).

    Article  CAS  Google Scholar 

  35. Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).

    Article  CAS  Google Scholar 

  36. Hernandez, H. & Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protoc. 2, 715–726 (2007).

    Article  CAS  Google Scholar 

  37. Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature Methods 6, 606–612 (2009).

    Article  CAS  Google Scholar 

  38. Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010).

    Article  CAS  Google Scholar 

  39. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  Google Scholar 

  40. Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  Google Scholar 

  41. McCoy, A. J. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  42. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Sobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. & Robinson, C. V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  Google Scholar 

  44. Brunton, A. N., Fraser, G. W., Lees, J. E. & Turcu, I. C. Metrology and modeling of microchannel plate X-ray optics. Appl. Opt. 36, 5461–5470 (1997).

    Article  CAS  Google Scholar 

  45. Ebong, I. O. et al. Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc. Natl Acad. Sci. USA 108, 17939–17944 (2011).

    Article  CAS  Google Scholar 

  46. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  Google Scholar 

  47. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  Google Scholar 

  48. Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

    Article  CAS  Google Scholar 

  49. Dyer, K. N. et al. In Structural Genomics General Applications (ed. Wai, Y.) Ch. 18, 245–258 (Molecular Methods in Biology Series, Vol. 1091, Springer, 2014).

Download references

Acknowledgements

This work was supported by the National Science Foundation (grant CHE-1332907, T.O.Y.), the BER programme of the Department of Energy Office of Science, and the National Institutes of Health (NIH, grant R01GM067167, F.J.A.). The authors thank M. Sawaya, D. Cascio, D. McNamara and D. Leibly for X-ray data collection at the Advanced Photon Source (APS), the staff at APS beamline 24-ID-C and the National Resource for Automated Macromolecular Microscopy (NRAMM) for support. The authors thank D. Woolfson, N. King and members of the D. Baker laboratory for discussions and T. Goddard for advice on modelling in UCSF Chimera. SAXS data collection and analysis at BL12.3.1 at the Advanced Light Source (ALS) was supported by the Integrated Diffraction Analysis Technologies (IDAT) program (DOE/BER), by the Department of Energy (contract DE-AC02-05CH11231) and by NIH MINOS (R01GM105404).

Author information

Authors and Affiliations

Authors

Contributions

Y-T.L. and T.O.Y. conceived the project. Y-T.L., E.R., G.H., K-L.T., A.L., J.A.T. and T.O.Y. performed the experiments and analysed the data. Y-T.L. and T.O.Y. drafted the manuscript. All other authors contributed to the writing and editing of individual sections of the complete manuscript.

Corresponding author

Correspondence to Todd O. Yeates.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, YT., Reading, E., Hura, G. et al. Structure of a designed protein cage that self-assembles into a highly porous cube. Nature Chem 6, 1065–1071 (2014). https://doi.org/10.1038/nchem.2107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing