Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer

Subjects

Abstract

Hydrogen is essential to several key industrial processes and could play a major role as an energy carrier in a future ‘hydrogen economy’. Although the majority of the world's hydrogen supply currently comes from the reformation of fossil fuels, its generation from water using renewables-generated power could provide a hydrogen source without increasing atmospheric CO2 levels. Conventional water electrolysis produces H2 and O2 simultaneously, such that these gases must be generated in separate spaces to prevent their mixing. Herein, using the polyoxometalate H3PMo12O40, we introduce the concept of the electron-coupled-proton buffer (ECPB), whereby O2 and H2 can be produced at separate times during water electrolysis. This could have advantages in preventing gas mixing in the headspaces of high-pressure electrolysis cells, with implications for safety and electrolyser degradation. Furthermore, we demonstrate that temporally separated O2 and H2 production allows greater flexibility regarding the membranes and electrodes that can be used in water-splitting cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the ECPB-based approach to water splitting.
Figure 2: Cyclic voltammograms showing the reversible redox waves of phosphomolybdic acid.
Figure 3: Current–voltage curves obtained when stirring with and without an ECPB.
Figure 4: Comparison of current densities for H2 and O2 evolution with and without the use of 0.5 M 50:50 (H3O+)[H2PMo12O40]:(H3O+) [H4PMo12O40].
Figure 5: Current densities and gas chromatography for H2 evolution using an ECPB.

Similar content being viewed by others

References

  1. US Department of Energy Hydrogen Analysis Resource Center, Hydrogen Production, Worldwide and US Total Hydrogen Production, http://hydrogen.pnl.gov/cocoon/morf/hydrogen/article/706 (2012).

  2. Schrock, R. R. Reduction of dinitrogen. Proc. Natl Acad. Sci. USA 103, 17087 (2006).

    Article  CAS  Google Scholar 

  3. Armaroli, N. & Balzani, V. The hydrogen issue. ChemSusChem 4, 21–36 (2011).

    Article  CAS  Google Scholar 

  4. Olah, G. A., Prakash, G. K. S. & Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133, 12881–12898 (2011).

    Article  CAS  Google Scholar 

  5. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  6. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  CAS  Google Scholar 

  7. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  CAS  Google Scholar 

  8. Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    Article  CAS  Google Scholar 

  9. Häussinger, P., Lohmüller, R. & Watson, A. M. Ullmann's Encyclopedia of Industrial Chemistry, Hydrogen, 2. Production (Wiley-VCH, 2005).

    Google Scholar 

  10. Holladay, J. D., Hu, J., King, D. L. & Wang, Y. An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009).

    Article  CAS  Google Scholar 

  11. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  12. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  Google Scholar 

  13. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  14. Atlam, O. An experimental and modelling study of a photovoltaic/proton-exchange membrane electrolyser system. Int. J. Hydrogen Energy 34, 6589–6595 (2009).

    Article  CAS  Google Scholar 

  15. Paul, B. & Andrews, J. Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply. Int. J. Hydrogen Energy 33, 490–498 (2008).

    Article  CAS  Google Scholar 

  16. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    Article  CAS  Google Scholar 

  17. Funk, J. E. Thermochemical hydrogen production: past and present. Int. J. Hydrogen Energy 26, 185–190 (2001).

    Article  CAS  Google Scholar 

  18. Onuki, K., Kubo, S., Terada, A., Sakaba, N. & Hino, R. Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ. Sci. 2, 491–497 (2009).

    Article  CAS  Google Scholar 

  19. Tsigdinos, G. A. Heteropoly compounds of molybdenum and tungsten. Top. Curr. Chem. 76, 1–64 (1978).

    Article  CAS  Google Scholar 

  20. Maeda, K., Himeno, S., Osakai, T., Saito, A. & Hori, T. A voltammetric study of Keggin-type heteropolymolybdate anions. J. Electroanal. Chem. 364, 149–154 (1994).

    Article  CAS  Google Scholar 

  21. Tanaka, N., Unoura, K. & Itabashi, E. Voltammetric and spectroelectrochemical studies of dodecamolybdophosphoric acid in aqueous and water–dioxane solutions at a gold-minigrid optically transparent thin-layer electrode. Inorg. Chem. 21, 1662–1666 (1982).

    Article  CAS  Google Scholar 

  22. Hamann, C. H., Hamnett, A. & Vielstich, W. Electrochemistry 2nd edn (Wiley-VCH, 2007).

    Google Scholar 

  23. Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  24. Le Goff, A. et al. From hydrogenases to noble metal–free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  CAS  Google Scholar 

  25. McKone, J. R. et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573–3583 (2011).

    Article  CAS  Google Scholar 

  26. Chen, W-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  27. Merki, D., Vrubel, H., Rovelli, L., Fierro, S., & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012).

    Article  CAS  Google Scholar 

  28. Cobo, S. et al. A Janus cobalt-based catalytic material for electro-splitting of water. Nature Mater. 11, 802–807 (2012).

    Article  CAS  Google Scholar 

  29. Miras, H. N. et al. Exploring the structure and properties of transition metal templated {VM17(VO4)2} Dawson-like capsules. Inorg. Chem. 50, 8384–8391 (2011).

    Article  CAS  Google Scholar 

  30. Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10, 59–75 (1979).

    Article  CAS  Google Scholar 

  31. Darwent, J. R. & Mills, A. Photo-oxidation of water sensitized by WO3 powder. J. Chem. Soc. Faraday Trans. 2 78, 359–367 (1982).

    Article  CAS  Google Scholar 

  32. Abe, R., Sayama, K. & Sugihara, H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3/I. J. Phys. Chem. B 109, 16052–16061 (2005).

    Article  CAS  Google Scholar 

  33. Maeda, K., Higashi, M., Lu, D., Abe, R. & Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858–5868 (2010).

    Article  CAS  Google Scholar 

  34. Skolnik, E. G. Compilation of site visit-based technical evaluations of hydrogen projects 1996–2001, Washington DC, http://www.osti.gov/bridge/servlets/purl/815055-bLCRmy/native/815055.pdf (2012).

  35. Pozio, A., Silva, R. F., De Francesco, M. & Giorgi, L. Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 48, 1543–1549 (2003).

    Article  CAS  Google Scholar 

  36. Miras, H. N., Wilson, E. F. & Cronin, L. Unravelling the complexities of inorganic and supramolecular self-assembly in solution with electrospray and cryospray mass spectrometry. Chem. Commun. 1297–1311 (2009).

  37. Hernández-Pagán, E. A. et al. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water splitting photoelectrochemical cells. Energy Environ. Sci. 5, 7582–7589 (2012).

    Article  Google Scholar 

  38. Lodi, G., Sivieri, E., De Battisti, A. & Trasatti, S. Ruthenium dioxide-based film electrodes. III. Effect of chemical composition and surface morphology on oxygen evolution in acid solutions. J. Appl. Electrochem. 8, 135–143 (1978).

    Article  CAS  Google Scholar 

  39. Burke, L. D., Murphy, O. J., O'Neill, J. F. & Venkatesan, S. The oxygen electrode. Part 8. Oxygen evolution at ruthenium dioxide anodes. J. Chem. Soc. Faraday Trans. 1 73, 1659–1671 (1977).

    Article  CAS  Google Scholar 

  40. Sleutels, T. H. J. A., Hamelers, H. V. M., Rozendal, R. A. & Buisman, C. J. N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrogen Energy 34, 3612–3620 (2009).

    Article  CAS  Google Scholar 

  41. Himeno, S. & Takamoto, M. Difference in voltammetric properties between the Keggin-type [XW12O40]n and [XMo12O40]n complexes. J. Electroanal. Chem. 528, 170–174 (2002).

    Article  CAS  Google Scholar 

  42. Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy 78, 661–669 (2005).

    Article  CAS  Google Scholar 

  43. Weinstock, I. A. et al. A new environmentally benign technology for transforming wood pulp into paper. Engineering polyoxometalates as catalysts for multiple processes. J. Mol. Catal. A 116, 59–84 (1997).

    Article  CAS  Google Scholar 

  44. Sonnen, D. M., Reiner, R. S., Atalla, R. H. & Weinstock, I. A. Degradation of pulp-mill effluent by oxygen and Na5[PV2Mo10O40], a multipurpose delignification and wet air oxidation catalyst. Ind. Eng. Chem. Res. 36, 4134–4142 (1997).

    Article  CAS  Google Scholar 

  45. Engstrom, R. C. & Strasser, V. A. Characterization of electrochemically pretreated glassy carbon electrodes. Anal. Chem. 56, 136–141 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (UK) and Glasgow Solar Fuels. L.C. thanks the Royal Society/Wolfson Foundation for a Merit Award. M.D.S. thanks the University of Glasgow for a Lord Kelvin Adam Smith Research Fellowship. We are grateful to J. McIver (University of Glasgow) for assistance with the GC headspace analyses, H. N. Miras (University of Glasgow) for mass spectrometry and J. Liddell (University of Glasgow) for manufacturing numerous bespoke electrolysis cells.

Author information

Authors and Affiliations

Authors

Contributions

M.D.S. and L.C. conceived the idea, planned experiments and co-wrote the paper, and M.D.S. performed the experiments and analysed the data.

Corresponding author

Correspondence to Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symes, M., Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nature Chem 5, 403–409 (2013). https://doi.org/10.1038/nchem.1621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing