Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products

Abstract

High-throughput screening is the dominant method used to identify lead compounds in drug discovery. As such, the makeup of screening libraries largely dictates the biological targets that can be modulated and the therapeutics that can be developed. Unfortunately, most compound-screening collections consist principally of planar molecules with little structural or stereochemical complexity, compounds that do not offer the arrangement of chemical functionality necessary for the modulation of many drug targets. Here we describe a novel, general and facile strategy for the creation of diverse compounds with high structural and stereochemical complexity using readily available natural products as synthetic starting points. We show through the evaluation of chemical properties (which include fraction of sp3 carbons, ClogP and the number of stereogenic centres) that these compounds are significantly more complex and diverse than those in standard screening collections, and we give guidelines for the application of this strategy to any suitable natural product.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Application of ring-distortion reactions in the synthesis of complex and diverse small molecules from G.
Figure 3: Application of ring-distortion reactions in the synthesis of complex and diverse small molecules from A.
Figure 4: Application of ring-distortion reactions in the synthesis of complex and diverse small molecules from Q.
Figure 5: Comparison of compounds created by the CtD method with commercial screening collections.

Similar content being viewed by others

References

  1. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  Google Scholar 

  2. Flaherty, K. T., Yasothan, U. & Kirkpatrick, P. Vemurafenib. Nature Rev. Drug Discov. 10, 811–812 (2011).

    Article  CAS  Google Scholar 

  3. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  Google Scholar 

  4. Domling, A. Small molecular weight protein–protein interaction antagonists: an insurmountable challenge? Curr. Opin. Chem. Biol. 12, 281–291 (2008).

    Article  CAS  Google Scholar 

  5. Grivas, P. D., Kiaris, H. & Papavassiliou, A. G. Tackling transcription factors: challenges in antitumor therapy. Trends Mol. Med. 17, 537–538 (2011).

    Article  CAS  Google Scholar 

  6. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  Google Scholar 

  7. Kodadek, T. The rise, fall and reinvention of combinatorial chemistry. Chem. Commun. 47, 9757–9763 (2011).

    Article  CAS  Google Scholar 

  8. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  Google Scholar 

  9. Galloway, W. R., Isidro-Llobet, A. & Spring, D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nature Commun. 1, 80 (2010).

    Article  Google Scholar 

  10. Spaller, M. R., Burger, M. T., Fardis, M. & Bartlett, P. A. Synthetic strategies in combinatorial chemistry. Curr. Opin. Chem. Biol. 1, 47–53 (1997).

    Article  CAS  Google Scholar 

  11. Clemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl Acad. Sci. USA 107, 18787–18792 (2010).

    Article  CAS  Google Scholar 

  12. Cui, J. et al. Creation and manipulation of common functional groups en route to a skeletally diverse chemical library. Proc. Natl Acad. Sci. USA 108, 6763–6768 (2011).

    Article  CAS  Google Scholar 

  13. Pelish, H. E., Westwood, N. J., Feng, Y., Kirchhausen, T. & Shair, M. D. Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. J. Am. Chem. Soc. 123, 6740–6741 (2001).

    Article  CAS  Google Scholar 

  14. Goess, B. C., Hannoush, R. N., Chan, L. K., Kirchhausen, T. & Shair, M. D. Synthesis of a 10,000-membered library of molecules resembling carpanone and discovery of vesicular traffic inhibitors. J. Am. Chem. Soc. 128, 5391–5403 (2006).

    Article  CAS  Google Scholar 

  15. Kumar, N., Kiuchi, M., Tallarico, J. A. & Schreiber, S. L. Small-molecule diversity using a skeletal transformation strategy. Org. Lett. 7, 2535–2538 (2005).

    Article  CAS  Google Scholar 

  16. Balthaser, B. R., Maloney, M. C., Beeler, A. B., Porco, J. A. & Snyder, J. K. Remodelling of the natural product fumagillol employing a reaction discovery approach. Nature Chem. 3, 969–973 (2011).

    Article  CAS  Google Scholar 

  17. Kopp, F., Stratton, C. F., Akella, L. B. & Tan, D. S. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nature Chem. Biol. 8, 358–365 (2012).

    Article  CAS  Google Scholar 

  18. Niggemann, J., Michaelis, K., Frank, R., Zander, N. & Hofle, G. Natural product-derived building blocks for combinatorial synthesis. Part 1. Fragmentation of natural products from myxobacteria. J. Chem. Soc. Perkin Trans. 1, 2490–2503 (2002).

    Article  Google Scholar 

  19. Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55, 5989–6001 (2012).

    Article  CAS  Google Scholar 

  20. Aquino, C. et al. A biomimetic polyketide-inspired approach to small-molecule ligand discovery. Nature Chem. 4, 99–104 (2012).

    Article  CAS  Google Scholar 

  21. O'Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  CAS  Google Scholar 

  22. Curtis, P. J. & Cross, B. E. Gibberellic acid. A new metabolite from the culture of filtrates of Gibberella fujikuroi. Chem. Ind. 1066 (1954).

  23. Rodrigues, C., Vandenberghe, L. P., de Oliveira, J. & Soccol, C. R. New perspectives of gibberellic acid production: a review. Crit. Rev. Biotechnol. 32, 263–273 (2012).

    Article  CAS  Google Scholar 

  24. Cross, B. E. Gibberellic acid. Part I. J. Chem. Soc. 4670–4676 (1954).

  25. Mulholland, T. P. C. Gibberellic acid. Part 9. The structure of allogibberic acid. J. Chem. Soc. 2693–2701 (1958).

  26. Henderson, J. H. & Graham, H. D. A possible mechanism for biological and chemical activity of gibberellic acid. Nature 193, 1055–1056 (1962).

    Article  CAS  Google Scholar 

  27. Grove, J. F. & Mulholland, T. P. C. Gibberellic acid. Part 12. The stereochemistry of allogibberic acid. J. Chem. Soc. 3007–3022 (1960).

  28. Cross, B. E., Grove, J. F. & Morrison, A. Gibberellic acid. 18. Some rearrangements of ring A. J. Chem. Soc. 2498–2515 (1961).

  29. Cross, B. E. & Markwell, R. E. Rearrangements of the gibbane skeleton during reactions with 2,3-dichloro-5,6-dicyanobenzoquinone. J. Chem. Soc. Perkin Trans. I 1476–1487 (1973).

  30. Idler, D. R., Schmidt, P. J. & Bitners, I. Isolation and identification of adrenosterone in salmon (Oncorhynchus nerka) plasma. Can. J. Biochem. Physiol. 39, 1653–1654 (1961).

    Article  CAS  Google Scholar 

  31. Borthakur, M. & Boruah, R. C. A microwave promoted and Lewis acid catalysed solventless approach to 4-azasteroids. Steroids 73, 637–641 (2008).

    Article  CAS  Google Scholar 

  32. Bernstein, S., Littell, R. & Williams, J. H. Steroidal cyclic ketals. IV. The conversion of 11-keto- to 11α-hydroxysteroids. The preparation of 11-epi-hydrocortisone, and Δ4-androstene-11α-ol-3,17-dione. J. Am. Chem. Soc. 75, 1481–1482 (1953).

    Article  CAS  Google Scholar 

  33. Lecomte, V., Stephan, E., LeBideau, F. & Jaouen, G. Improved addition of organolithium reagents to hindered and/or enolisable ketones. Tetrahedron 59, 2169–2176 (2003).

    Article  CAS  Google Scholar 

  34. Stephan, E., Brossat, M., Lecomte, V. & Bouit, P. A. Synthesis of the 11 beta-hydroxymethyl-androst-4-en-3,17-dione. Tetrahedron 62, 3052–3055 (2006).

    Article  CAS  Google Scholar 

  35. Song, C. E. Cinchona Alkaloids in Synthesis and Catalysis 1–10 (Wiley, 2009).

    Book  Google Scholar 

  36. Smith, A. C. & Williams, R. M. Rabe rest in peace: confirmation of the rabe-kindler conversion of D-quinotoxine into quinine: experimental affirmation of the Woodward–Doering formal total synthesis of quinine. Angew. Chem. Int. Ed. 47, 1736–1740 (2008).

    Article  CAS  Google Scholar 

  37. Hintermann, L., Schmitz, M. & Englert, U. Nucleophilic addition of organometallic reagents to cinchona alkaloids: simple access to diverse architectures. Angew. Chem. Int. Ed. 46, 5164–5167 (2007).

    Article  CAS  Google Scholar 

  38. Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

    Article  CAS  Google Scholar 

  39. O'Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    Article  CAS  Google Scholar 

  40. Walters, W. P., Green, J., Weiss, J. R. & Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 54, 6405–6416 (2011).

    Article  CAS  Google Scholar 

  41. Feher, M. & Schmidt, J. M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    Article  CAS  Google Scholar 

  42. Yan, A. & Gasteiger, J. Prediction of aqueous solubility of organic compounds by topological descriptors. QSAR Comb. Sci. 22, 821–829 (2003).

    Article  CAS  Google Scholar 

  43. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  44. Leeson, P. D. & St-Gallay, S. A. The influence of the ‘organizational factor’ on compound quality in drug discovery. Nature Rev. Drug Discov. 10, 749–765 (2011).

    Article  CAS  Google Scholar 

  45. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov. 6, 881–890 (2007).

    Article  CAS  Google Scholar 

  46. Rogers, D. J. & Tanimoto, T. T. A computer program for classifying plants. Science 132, 1115–1118 (1960).

    Article  CAS  Google Scholar 

  47. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article  CAS  Google Scholar 

  48. Huggins, D. J., Venkitaraman, A. R. & Spring, D. R. Rational methods for the selection of diverse screening compounds. ACS Chem. Biol. 6, 208–217 (2011).

    Article  CAS  Google Scholar 

  49. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Natural Prod. 75, 311–335 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Office of Naval Research (N00014-09-1-0249) and the University of Illinois for support of this work. R.W.H. III is an American Cancer Society postdoctoral fellow. K.C.M. is a National Science Foundation predoctoral fellow and a Robert C. and Carolyn J. Springborn graduate fellow. M.F.R. is a member of the National Institutes of Health Chemistry–Biology Interface (Training Grant NRSA 1-T-32-GM070421). We thank D. Gray for the X-ray analysis of Q1, M. Brichacek for technical assistance with selected two-dimensional NMR experiments in addition to many helpful discussions and R. J. Rafferty for technical assistance. We also thank M. Ahmed and A. Al-khouja for the synthesis of various intermediates during these investigations.

Author information

Authors and Affiliations

Authors

Contributions

P.J.H. and R.W.H. III conceived the study. R.W.H. III designed and executed the synthesis of the A compound set and constructed libraries based on compounds A1, A2, A3, A5, A9, A12 and A15. K.C.M. designed and executed the synthesis of the G compound set and constructed libraries based on G6, G10 and G19. R.W.H. designed and executed the synthesis of the Q compound set and constructed the library based on Q1. T.A.F. performed computational analyses of all the compound sets discussed in this Article. M.F.R. constructed libraries of compounds A3, A12, G10 and G16. P.J.H. supervised this research and wrote this manuscript with the assistance of R.W.H. III, K.C.M., R.W.H. and T.A.F.

Corresponding author

Correspondence to Paul J. Hergenrother.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11000 kb)

Supplementary information

Crystallographic data for compound Q1 (CIF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huigens III, R., Morrison, K., Hicklin, R. et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chem 5, 195–202 (2013). https://doi.org/10.1038/nchem.1549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing