Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules

Abstract

One of the key challenges in chemistry is to break and form bonds selectively in complex organic molecules that possess a range of different functional groups. To do this at the single-molecule level not only provides an opportunity to create custom nanoscale devices, but offers opportunities for the in-depth study of how the molecular electronic structure changes in individual reactions. Here we use a scanning tunnelling microscope (STM) to induce a sequence of targeted bond dissociation and formation steps in single thiol-based π-conjugated molecules adsorbed on a NiAl(110) surface. Furthermore, the electronic resonances of the resulting species were measured by spatially resolved electronic spectroscopy at each reaction step. Specifically, the STM was used to cleave individual acetyl groups and to form Au–S bonds by manipulating single Au atoms. A detailed understanding of the Au–S bond and its non-local influence is fundamentally important for determining the electron transport in thiol-based molecular junction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stepwise dissociation sequence of the DSB-2S-2Ac molecule.
Figure 2: Electronic structures of the molecules terminated with different functional groups.
Figure 3: Formation sequence of the DSB-2S-2Au complex.
Figure 4: Spatially resolved spectroscopy of the DSB-2S-2Au complex.

Similar content being viewed by others

References

  1. Jortner, J., Levine, R. D. & Pullman, B. Mode Selective Chemistry (Kluwer Academic, 1991).

    Book  Google Scholar 

  2. Crim, F. F. Bond-selected chemistry: vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100, 12725–12734 (1996).

    Article  CAS  Google Scholar 

  3. Ho, W. Inducing and viewing bond selected chemistry with tunneling electrons. Acc. Chem. Res. 31, 567–573 (1998).

    Article  CAS  Google Scholar 

  4. Hla, S. W. & Rieder, K. H. STM control of chemical reactions: single-molecule synthesis. Annu. Rev. Phys. Chem. 54, 307–330 (2003).

    Article  CAS  Google Scholar 

  5. Stipe, B. C. et al. Single molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997).

    Article  CAS  Google Scholar 

  6. Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722 (1999).

    Article  CAS  Google Scholar 

  7. Hla, S. W., Bartels, L., Meyer, G. & Rieder, K. H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  8. Lauhon, L. J. & Ho, W. Control and characterization of a multistep unimolecular reaction. Phys. Rev. Lett. 84, 1527–1530 (2000).

    Article  CAS  Google Scholar 

  9. Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H-P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    Article  CAS  Google Scholar 

  10. Sloan, P. A. & Palmer, R. E. Two-electron dissociation of single molecules by atomic manipulation at room temperature. Nature 434, 367–371 (2005).

    Article  CAS  Google Scholar 

  11. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  Google Scholar 

  12. Gawronski, H., Carrasco, J., Michaelides, A. & Morgenstern, K. Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys. Rev. Lett. 101, 136102 (2008).

    Article  Google Scholar 

  13. Sakulsermsuk, S., Sloan, P. A. & Palmer, R. E. A new mechanism of atomic manipulation: bond-selective molecular dissociation via thermally activated electron attachment. ACS Nano 4, 7344–7348 (2010).

    Article  CAS  Google Scholar 

  14. Shin, H. J. et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Mater. 9, 442–447 (2010).

    Article  CAS  Google Scholar 

  15. Kumagai, T. et al. H-atom relay reactions in real space. Nature Mater. 11, 167–172 (2012).

    Article  CAS  Google Scholar 

  16. Pauling, L. The Nature of the Chemical Bond (Cornell University Press, 1960).

  17. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  18. Li, X. et al. Conductance of single alkanedithiols: conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    Article  CAS  Google Scholar 

  19. Yaliraki, S. N., Kemp, M. & Ratner, M. A. Conductance of molecular wires: influence of molecule–electrode binding. J. Am. Chem. Soc. 121, 3428–3434 (1999).

    Article  CAS  Google Scholar 

  20. Bratkovsky, A. M. & Kornilovitch, P. E. Effects of gating and contact geometry on current through conjugated molecules covalently bonded to electrodes. Phys. Rev. B 67, 115307 (2003).

    Article  Google Scholar 

  21. Chen, F., Hihath, J., Huang, Z., Li, X. & Tao, N. J. Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 58, 535–564 (2007).

    Article  CAS  Google Scholar 

  22. Antoniewicz, P. R. Model for electron- and photon-stimulated desorption. Phys. Rev. B 21, 3811–3815 (1980)

    Article  CAS  Google Scholar 

  23. Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    Article  CAS  Google Scholar 

  24. Qiu, X. H., Nazin, G. V. & Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806 (2004).

    Article  CAS  Google Scholar 

  25. Iancu, V. & Hla, S. W. Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules. Proc. Natl Acad. Sci. USA 103, 13718–13721 (2006).

    Article  CAS  Google Scholar 

  26. Lastapis, M. et al. Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005).

    Article  CAS  Google Scholar 

  27. Seferos, D. S., Trammell, S. A., Bazan, G. C. & Kushmerick, J. G. Probing π-coupling in molecular junctions. Proc. Natl Acad. Sci. USA 102, 8821–8825 (2005).

    Article  CAS  Google Scholar 

  28. Nilius, N., Wallis, T. M., Persson, M. & Ho, W. Distance dependence of the interaction between single atoms: gold dimers on NiAl(110). Phys. Rev. Lett. 90, 196103 (2003).

    Article  CAS  Google Scholar 

  29. Lauhon, L. J. & Ho, W. Single molecule chemistry and vibrational spectroscopy: pyridine and benzene on Cu(001). J. Phys. Chem. A 104, 2463–2467 (2000).

    Article  CAS  Google Scholar 

  30. Schwingenschlögl, U. & Schuster, C. Electronic structure of the Au/benzene-1,4-dithiol/Au transport interface: effects of chemical bonding. Chem. Phys. Lett. 435, 100–103 (2007).

    Article  Google Scholar 

  31. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  32. Yu, M. et al. True nature of an archetypal self-assembly system: mobile Au–thiolate species on Au(111). Phys. Rev. Lett. 97, 166102 (2006).

    Article  Google Scholar 

  33. Cossaro, A. et al. X-ray diffraction and computation yield the structure of alkanethiols on gold(111). Science 321, 943–946 (2008).

    Article  CAS  Google Scholar 

  34. Bratkovsky, A. M. & Kornilovitch, P. E. Effects of gating and contact geometry on current through conjugated molecules covalently bonded to electrodes. Phys. Rev. B 67, 115307 (2003).

    Article  Google Scholar 

  35. Ning, Z. Y., Ji, W. & Guo, H. Role of contact formation process in transport properties of molecular junctions: conductance of Au/BDT/Au molecular wires. Mesoscale Nanoscale Phys. http://arxiv.org/abs/0907.4674 (2010).

  36. Galperin, M., Ratner, M. A., Nitzan, A. & Trosi, A. Nuclear coupling and polarization in molecular transport. Science 319, 1056–1060 (2008).

    Article  CAS  Google Scholar 

  37. Stipe, B. C., Rezaci, M. A. & Ho, W. A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy. Rev. Sci. Instrum. 70, 137–143 (1999).

    Article  CAS  Google Scholar 

  38. Seferos, D. S., Banach, D. A., Alcantar, N. A., Israelachvili, J. N. & Bazan, G. C. α,ω-Bis(thioacetyl)oligophenylenevinylene chromophores from thioanisol precursors. J. Org. Chem. 69, 1110–1119 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. Ji and C. Chen for helpful discussions. This work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space–Time Limit (CaSTL) under Grant CHE-0802913, the National Basic Research 973 Programs of China under Grant 2012CB921303, and the Chemical Science, Geo- and Bioscience Division, Office of Science, US Department of Energy, under Grant DE-FG02-06ER15826. In addition, Y.J. acknowledges support from the National Science Foundation of China under Grants 11104004 and 91021007, and the Research Fund for the Doctoral Program of Higher Education of China under Grant 20110001120126.

Author information

Authors and Affiliations

Authors

Contributions

W.H. designed and supervised the project. Y.J. and Q.H. performed the measurements and analysed the data, and contributed equally to this work. L.F. and G.C.B. synthesized the DSB-2S-2Ac molecules. Y.J. and W.H. co-wrote the manuscript. The manuscript reflects the contributions of all the authors.

Corresponding author

Correspondence to Wilson Ho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Huan, Q., Fabris, L. et al. Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules. Nature Chem 5, 36–41 (2013). https://doi.org/10.1038/nchem.1488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing