Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gold–sulfur interface at the nanoscale

Abstract

Thiolate-protected gold surfaces and interfaces, relevant for self-assembled monolayers of organic molecules on gold, for passivated gold nanoclusters and for molecule–gold junctions, are archetypal systems in various fields of current nanoscience research, materials science, inorganic chemistry and surface science. Understanding this interface at the nanometre scale is essential for a wide range of potential applications for site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, functionalization of gold surfaces for sensing, molecular recognition and molecular electronics, and gold nanoparticle catalysis. During the past five years, considerable experimental and theoretical advances have furthered our understanding of the molecular structure of the gold–sulfur interface in these systems. This Review discusses the recent progress from the viewpoint of theory and computations, with connections to relevant experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of bonding motifs between thiolates and gold.
Figure 2: Computed structures, bonding motifs and electronic states of gold–thiolate complexes.
Figure 3: STM images and atomistic interpretation of the structure of the low-coverage striped phase of methylthiolates CH3S on Au(111).
Figure 4: DFT-optimized atomistic models for the saturation-coverage c(4 × 2) methylthiolate–gold interface and photoemission core-level shifts.
Figure 5: Analysis of the single-crystal X-ray structure of para-mercaptobenzoic acid (p-MBA) protected cluster, Au102(p-MBA)44.
Figure 6: Structures of the Au25(SR)18 and Au144(SR)60 clusters.
Figure 7: Chiral recognition and response of organosulfur molecules at various gold surfaces.
Figure 8: Schematics of Au–BDT–Au junctions and computed structures, conductance and dynamics by using the novel RS(AuSR)n motif.

Similar content being viewed by others

References

  1. Dubois, L. H. & Nuzzo, R. G. Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem. 43, 437–463 (1992).

    CAS  Google Scholar 

  2. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    CAS  PubMed  Google Scholar 

  3. Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000).

    CAS  Google Scholar 

  4. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    CAS  PubMed  Google Scholar 

  5. Woodruff, D. P. The interface structure of n-alkylthiolate self-assembled monolayers on coinage metal surfaces. Phys. Chem. Chem. Phys. 10, 7211–7221 (2008).

    CAS  PubMed  Google Scholar 

  6. Vericat, C., Vela, M. E., Benitez, G., Carro, P. & Salvarezza, R. C. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010).

    CAS  PubMed  Google Scholar 

  7. Maksymovych, P., Voznyy, O., Dougherty, D. B., Sorescu, D. C. & Yates, J. T. Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog. Surf. Sci. 85, 206–240 (2010).

    CAS  Google Scholar 

  8. Templeton, A. C., Wuelfing, W. P. & Murray, R. W. Monolayer-protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000).

    CAS  PubMed  Google Scholar 

  9. Daniel, M-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    CAS  PubMed  Google Scholar 

  10. Häkkinen, H. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008).

    PubMed  Google Scholar 

  11. Sardar, R., Funston, A. M., Mulvaney, P. & Murray, R. W. Gold nanoparticles: past, present and future. Langmuir 25, 13840–13851 (2009).

    CAS  PubMed  Google Scholar 

  12. Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2, 343–362 (2010).

    CAS  PubMed  Google Scholar 

  13. Ratner, M. A. Introducing molecular electronics. Mater. Today 5, 20–27 (2002).

    CAS  Google Scholar 

  14. Agraït, N., Yeyati, A-L. & van Ruitenbeek, J.-M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Google Scholar 

  15. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  PubMed  Google Scholar 

  16. Chen, F & Tao, N. J. Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42, 429 (2009).

    CAS  PubMed  Google Scholar 

  17. Ackerson, C. J., Powell, R. D. & Hainfeld, J. F. in Cryo-EM Part A: Sample Preparation and Data Collection. Methods in Enzymology Vol. 481 (Elsevier, 2010).

    Google Scholar 

  18. Ackerson, C. J., Jadzinsky, P. D., Sexton, J. Z., Bushnell, D. A. & Kornberg, R. D. Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. Bioconjugate Chem. 21, 214–218 (2010).

    CAS  Google Scholar 

  19. Bowman, M-C. et al. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 103, 6896 (2008).

    Google Scholar 

  20. Giljohann, D. A. et al. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49, 3280 (2010).

    CAS  Google Scholar 

  21. Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  22. Demers, L. M. et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836 (2002).

    CAS  PubMed  Google Scholar 

  23. Whetten, R. L. & Price R. C. Nano-golden order. Science 318, 407–408 (2007).

    CAS  PubMed  Google Scholar 

  24. Puddephatt, R. J. The Chemistry of Gold (Elsevier, 1978).

    Google Scholar 

  25. Schmidbaur, H. (ed.) Gold: Progress in Chemistry, Biochemistry and Technology (Wiley, 1999).

    Google Scholar 

  26. Laguna, A. (ed) Modern Supramolecular Gold Chemistry (Wiley, 2008).

    Google Scholar 

  27. Shaw, C. F. Gold-based therapeutic agents. Chem. Rev. 99, 2589–2600 (1999).

    CAS  Google Scholar 

  28. Dance, I. G. The structural chemistry of metal thiolate complexes. Polyhedron 5, 1037–1104 (1986).

    CAS  Google Scholar 

  29. Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008).

    CAS  PubMed  Google Scholar 

  30. Rawlings, D. E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 56, 65–91 (2002).

    CAS  PubMed  Google Scholar 

  31. Wiseman, M. R., Marsh, P. A., Bishop. P. T., Brisdon, B. J. & Mahon, M. F. Homoleptic gold thiolate catenanes. J. Am. Chem. Soc. 122, 12598 (2000).

    CAS  Google Scholar 

  32. Bau, R. Crystal structure of the antiarthritic drug gold thioamalate (myochrysine): a double helical geometry in the solid state. J. Am. Chem. Soc. 120, 9380 (1998).

    CAS  Google Scholar 

  33. Pyykkö, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988).

    Google Scholar 

  34. Pyykkö, P. & Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979).

    Google Scholar 

  35. Grönbeck, H. Walter, M. & Häkkinen, H. Theoretical characterization of cyclic thiolated gold clusters. J. Am. Chem. Soc. 128, 10268–10275 (2006).

    PubMed  Google Scholar 

  36. Howell, J. A. S. Structure and bonding in cyclic thiolate complexes of copper, silver and gold. Polyhedron 25, 2993–3005 (2006).

    CAS  Google Scholar 

  37. Shao, N., Pei, Y., Gao, Y. & Zheng, X. C. Onset of double helical structure in small-sized homoleptic gold thiolate clusters. J. Phys. Chem. A 113, 629–632 (2009).

    CAS  PubMed  Google Scholar 

  38. Kacprzak, K. A., Lopez-Acevedo, O. ;, Häkkinen, H. & Grönbeck, H. Theoretical characterization of cyclic thiolated copper, silver and gold clusters. J. Phys. Chem. C 114, 13571–13576 (2010).

    CAS  Google Scholar 

  39. Barngrover, B. M. & Aikens, C. M. Incremental binding energies of gold(I) and silver(I) thiolate clusters. J. Phys. Chem. A 115, 11818–11823 (2011).

    CAS  PubMed  Google Scholar 

  40. Ning, C-G., Xiong, X-G., Wang, Y-L., Li, J. & Wang, L-S. Probing the electronic structure and chemical bonding of the 'staple' motifs of thiolate gold nanoparticles: Au(SCH3)2 and Au2(SCH3)3. Phys. Chem. Chem. Phys. (in the press).

  41. Henkelman, G., Arnaldsson, A. & Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Google Scholar 

  42. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

    CAS  Google Scholar 

  43. Nuzzo, R. G., Zegarski, B. R. & Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 109, 733–740 (1987).

    CAS  Google Scholar 

  44. Chidsey, C. E. D., Liu, G. Y., Rowntree, P. & Scoles, G. Molecular order at the surface of an organic monolayer studied by low energy helium diffraction. J. Chem. Phys. 91, 4421 (1989).

    CAS  Google Scholar 

  45. Strong, L. & Whitesides, G. M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4, 546–558 (1988).

    CAS  Google Scholar 

  46. Chidsey, C. E. D. & Loiacono, D. N. Chemical functionality in self-assembled monolayers: structural and electrochemical properties. Langmuir 6, 682–691 (1990).

    CAS  Google Scholar 

  47. Fenter, P., Eberhardt, A. & Eisenberger, P. Self-assembly of N-alkyl thiols as disulfides on Au(111). Science 266, 1216–1218 (1994).

    CAS  PubMed  Google Scholar 

  48. Fenter, P. et al. On the structure and evolution of the buried S/Au interface in self-assembled monolayers: X-ray standing wave results. Surf. Sci. 412/413, 213–215 (1998).

    CAS  Google Scholar 

  49. Kondoh, H. et al. Adsorption of thiolates to singly coordinated sites on Au(111) evidenced by photoelectron diffraction. Phys. Rev. Lett. 90, 066102 (2003).

    CAS  PubMed  Google Scholar 

  50. Roper, M. G. et al. Atop adsorption site of sulfur head groups in gold–thiolate self-assembled monolayers. Chem. Phys. Lett. 389, 87–91 (2004).

    CAS  Google Scholar 

  51. Molina. L. M. & Hammer, B. Theoretical study of thiol-induced reconstructions on the Au(111) surface. Chem. Phys. Lett. 360, 264–271 (2002).

    CAS  Google Scholar 

  52. Maksymovych, P., Sorescu, D. C. & Yates, J. T. Jr Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97, 146103 (2006).

    PubMed  Google Scholar 

  53. Maksymovych, P. & Yates, J. T. Au adatoms in self-assembly of benzenethiol on the Au(111) surface. J. Am. Chem. Soc. 130, 7518–7519 (2008).

    PubMed  Google Scholar 

  54. Voznyy, O. & Dubowski, J. J. c(4 × 2) structures of alkanethiol monolayers on Au(111) compatible with the constraint of dense packing. Langmuir 25, 7353–7358 (2009).

    CAS  PubMed  Google Scholar 

  55. Voznyy, O., Dubowski, J. J., Yates, J. T. & Maksymovych, P. The role of gold adatoms and stereochemistry in self-assembly of methylthiolate on Au(111). J. Am. Chem. Soc. 131, 12989–12993 (2009).

    CAS  PubMed  Google Scholar 

  56. Grönbeck, H., Häkkinen, H. & Whetten, R. L. Gold-thiolate complexes form a unique c(4 × 2) structure on Au(111). J. Phys. Chem. C 112, 15940–15942 (2008).

    Google Scholar 

  57. Grönbeck, H. & Odelius, M. Photoemission core-level shifts reveal thiolate–Au(111) interface. Phys. Rev. B 82, 085416 (2010).

    Google Scholar 

  58. Chaudhuri, A., Lerotholi, T. J., Jackson, D. C., Woodruff, D. P. & Dhanak, V. Local methylthiolate adsorption geometry on Au(111) from photoemission core-level shifts. Phys. Rev. Lett. 102, 126101 (2009).

    CAS  PubMed  Google Scholar 

  59. Chaudhuri, A., Lerotholi, T. J., Jackson, D. C., Woodruff, D. P. & Dhanak, V. R. The local adsorption structure of methylthiolate and butylthiolate on Au(111): A photemission core-level shift investigation. Surf. Sci. 604, 227 (2010).

    CAS  Google Scholar 

  60. Mazzarello, R. et al. Structure of a CH3S monolayer on Au(111) solved by the interplay between molecular dynamics calculations and diffraction measurements. Phys. Rev. Lett. 98, 016102 (2007).

    CAS  PubMed  Google Scholar 

  61. Cossaro, A. et al. X-ray diffraction and computation yield the structure of alkanethiols on gold(111). Science 321, 943–946 (2008).

    CAS  PubMed  Google Scholar 

  62. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. Chem. Commun. 801–802 (1994).

  63. Zhu, M. Z., Qian, H. F. & Jin, R. C. Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J. Am. Chem. Soc. 131, 7220 (2009).

    CAS  PubMed  Google Scholar 

  64. Negishi, Y., Nobusada, K. & Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261–5270 (2005).

    CAS  PubMed  Google Scholar 

  65. Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).

    CAS  PubMed  Google Scholar 

  66. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

    CAS  PubMed  Google Scholar 

  67. Zhu, M., Eckenhoff, W. T., Pintauer, T. & Jin, R. C. Conversion of anionic [Au25(SCH2CH2Ph)18] cluster to charge neutral cluster via air oxidation J. Phys. Chem. C 112, 14221–14224 (2008).

    CAS  Google Scholar 

  68. Chaki, N. K., Negishi, Y., Tsunoyama, H., Shichibu, Y. & Tsukuda, T. Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J. Am. Chem. Soc. 130, 8608–8610 (2008).

    CAS  PubMed  Google Scholar 

  69. Qian, H. F., Eckenhoff, W. T., Zhu, Y., Pintauer, T. & Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 132, 8280–8281 (2010).

    CAS  PubMed  Google Scholar 

  70. Qian, H. F., Zhu, Y. & Jin, R. C. Isolation of ubiquitous Au40(SR)24 clusters from the 8 kDa gold clusters. J. Am. Chem. Soc. 132, 4583–4585 (2010).

    CAS  PubMed  Google Scholar 

  71. Dass, A. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J. Am. Chem. Soc. 131, 11666–11667 (2009).

    CAS  PubMed  Google Scholar 

  72. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    CAS  PubMed  Google Scholar 

  73. Fields-Zinna, C. A., Sardar, R., Beasley, C. A. & Murray, R. W. Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles Au144/146(SC11H22N(CH2CH3)3+)x(S(CH2)5CH3)y]x+. J. Am. Chem. Soc. 131, 16266–16271 (2009).

    CAS  PubMed  Google Scholar 

  74. Qian, H. F. & Jin, R. C. Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60 . Nano Lett. 9, 4083–4087 (2009).

    CAS  PubMed  Google Scholar 

  75. Häkkinen, H., Barnett, R. N. & Landman, U. Electronic structure of passivated Au38(SCH3)24 nanocrystal. Phys. Rev. Lett. 82, 3264–3267 (1999).

    Google Scholar 

  76. Garzon, I. L. et al. Do thiols merely passivate gold nanoclusters? Phys. Rev. Lett. 85, 5250–5251 (1999).

    Google Scholar 

  77. Häkkinen, H., Walter, M. & Grönbeck, H. Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J. Phys. Chem. B 110, 9927–9931 (2006).

    PubMed  Google Scholar 

  78. Lopez-Acevedo, O., Akola, J., Whetten, R. L., Grönbeck, H. & Häkkinen, H. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60 . J. Phys. Chem. C 113, 5035–5038 (2009).

    CAS  Google Scholar 

  79. Malola, S. & Häkkinen, H. Electronic structure and bonding of icosahedral core–shell gold–silver nanoalloy clusters Au144–xAgx(SR)60 . J. Phys. Chem. Lett. 2, 2316–2321 (2011).

    CAS  Google Scholar 

  80. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. 105, 9157–9162 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected Au25 . J. Am. Chem. Soc. 130, 3756–3757 (2008).

    CAS  PubMed  Google Scholar 

  82. Hulkko, E. et al. Electronic and vibrational signatures of the Au102(pMBA)44 cluster. J. Am. Chem. Soc. 133, 3752 (2011).

    CAS  PubMed  Google Scholar 

  83. Amabilino, D. B. (ed.) Chirality at the Nanoscale (Wiley, 2009).

    Google Scholar 

  84. Easson, E. H. & Stedman, E. Studies on the relationship between chemical constitution and physiological action. Molecular dissymmetry and physiological activity. Biochem. J. 27, 1257 (1933).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Booth, T. D., Wahnon, D. & Wainer, I. W. Is chiral recognition a three-point process? Chirality 9, 96–98 (1997).

    CAS  Google Scholar 

  86. Kühnle, A., Linderoth, T. R., Hammer, B. & Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 415, 891–893 (2002).

    PubMed  Google Scholar 

  87. Schaaff, T. G. & Whetten, R. L. Giant gold–glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000).

    CAS  Google Scholar 

  88. Yanagimoto, Y, Negishi, Y., Fujihara, H. & Tsukuda, T. Chiroptical activity of BINAP-stabilized undecagold clusters. J. Phys. Chem. B 110, 11611–11614 (2006).

    CAS  PubMed  Google Scholar 

  89. Goldsmith, M-R. et al. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Phys. Chem. Chem. Phys. 8, 63–67 (2006).

    CAS  PubMed  Google Scholar 

  90. Yao, H., Fukui, T. & Kimura K. Chiroptical response of D/L penicillamine-capped gold clusters under perturbations of temperature change and phase transfer. J. Phys. Chem. C 111, 14968 (2007).

    CAS  Google Scholar 

  91. Yao, H., Fukui, T. & Kimura K. Asymmetric transformation of monolayer-protected gold nanoclusters via chiral phase transfer. J. Phys. Chem. C 112, 16281 (2008).

    CAS  Google Scholar 

  92. Qi, H. & Hegmann, T. Postsynthesis racemization and place exchange reactions. Another step to unravel the origin of chirality for chiral ligand-capped gold nanoparticles. J. Am. Chem. Soc. 130, 14201–14206 (2008).

    CAS  PubMed  Google Scholar 

  93. Noguez, C. & Garzon, I. L. Optically active metal nanoparticles. Chem. Soc. Rev. 38, 757 (2009).

    CAS  PubMed  Google Scholar 

  94. Si, S., Gautier, C., Boudon, J., Taras, R., Gladiali, S. & Burgi, T. Ligand exchange on Au25 cluster with chiral thiols. J. Phys. Chem. C 113, 12966 (2009).

    CAS  Google Scholar 

  95. Gautier, C. & Burgi, T. Chiral gold nanparticles. ChemPhysChem 10, 483–492 (2009).

    CAS  PubMed  Google Scholar 

  96. Sanchez-Castillo, A., Noguez, C. & Garzon, I. L. On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters. J. Am. Chem. Soc. 132, 1504 (2010).

    CAS  PubMed  Google Scholar 

  97. Qian, H. F., Zhu, M. Z., Gayathri, C., Gil, R. R. & Jin, R. C. Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5, 8935–8942 (2011).

    CAS  PubMed  Google Scholar 

  98. Dolamic, I., Knoppe, S., Dass, A. & Thomas Bürgi, T. Chiral gold nanoclusters protected by achiral ligands: first enantioseparation and circular dichroism spectra of Au38(SCH2CH2Ph)24 . Nature Commun. 3, 798 (2012).

    Google Scholar 

  99. Lopez-Acevedo, H., Tsunoyama, T., Tsukuda, H., Häkkinen, H. & Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 132, 8210–8218 (2010).

    CAS  PubMed  Google Scholar 

  100. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1973).

    Google Scholar 

  101. Ratner, M. A. Introducing molecular electronics. Mater. Today 5, 20–27 (February, 2002).

    CAS  Google Scholar 

  102. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  PubMed  Google Scholar 

  103. Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705 (1996).

    CAS  Google Scholar 

  104. Agrait, N., Levy-Yeyati, A. & van Ruitenbeek, J. M. Quantum properties of atomic-scale conductors. Phys. Rep. 377, 81–380 (2003).

    CAS  Google Scholar 

  105. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    CAS  Google Scholar 

  106. Xiao, X, Xu, B. & Tao, N. J. Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267–271 (2004).

    CAS  Google Scholar 

  107. Tsutsui, M., Teramae, Y., Kurokawa, S. & Sakai, A. High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89, 163111 (2006).

    Google Scholar 

  108. Ulrich, J. et al. Variability of conductance in molecular junctions. J. Phys. Chem. B 110, 2462–2466 (2006).

    CAS  PubMed  Google Scholar 

  109. Lörtscher, E., Weber, H. B. & Riel, H. Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 98, 176807 (2007).

    PubMed  Google Scholar 

  110. Martin, C. A., Ding, D., van der Zant, H. S. J. & van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: possibilities and limitations. New J. Phys. 10, 065008 (2008).

    Google Scholar 

  111. Haiss, W. et al. Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges. J. Phys. Condens. Matter 20, 374119 (2008).

    PubMed  Google Scholar 

  112. Horiguchi, K., Tsutsui, M., Kurokawa, S. & Sakai, A. Electron transmission characteristics of Au/1,4-benzenedithiol/Au junctions. Nanotechnology 20, 0252041 (2009).

    Google Scholar 

  113. Song, H., et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    CAS  PubMed  Google Scholar 

  114. Kim, Y., Hellmuth, T. J., Burkle, M., Pauly, F. & Scheer, E. Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunnelling spectroscopy. ACS Nano 5, 4104–4111 (2011).

    CAS  PubMed  Google Scholar 

  115. Kim, Y., Pietsch, T., Erbe, A., Belzig, W. & Scheer, E. Benzenedithiol: a broad range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011).

    CAS  PubMed  Google Scholar 

  116. Di Ventra M, Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular wire. Phys. Rev. Lett. 84, 979–982 (2000).

    CAS  PubMed  Google Scholar 

  117. Basch, H., Cohen, R. & Ratner, M. A. Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching. Nano Lett. 5, 1668–1675 (2005).

    CAS  PubMed  Google Scholar 

  118. Andrews, D. Q., Van Duyne, R. P. & Ratner, M. A. Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations. Nano Lett. 8, 1120–1126 (2008).

    CAS  PubMed  Google Scholar 

  119. Yeganeh, S., Ratner, M. A., Galperin, M. & Nitzan, A. Transport in state space: voltage-dependent conductance calculations of benzene-1,4-dithiol. Nano Lett. 9, 1770–1774 (2009).

    CAS  PubMed  Google Scholar 

  120. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nature Chem. 2, 223–228 (2010).

    CAS  Google Scholar 

  121. Strange, M., Lopez-Acevedo, O. & Häkkinen, H. Oligomeric gold-thiolate units define the properties of the molecular junction between gold and benzene dithiols. J. Phys. Chem. Lett. 1, 1528–1532 (2010).

    CAS  Google Scholar 

  122. Sergueev, N, Tsetseris, L., Varga, K. & Pantelides, S. Configuration and conductance evolution of benzene–dithiol molecular junctions under elongation. Phys. Rev. B 82, 073106 (2010).

    Google Scholar 

  123. Reuter, M. G., Seideman, T. & Ratner, M. A. Guidelines for choosing molecular 'alligator clip' binding motifs in electron transport devices. J. Chem. Phys. 134, 154708 (2011).

    PubMed  Google Scholar 

  124. Pontes, R. B., Rocha, A. R., Sanvito, S., Fazzio, A. & da Silva, A. J. R. Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. ACS Nano 2, 795–804 (2011).

    Google Scholar 

  125. Strange, M., Rostgaard, C., Häkkinen, H. & Thygesen, K. S. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011).

    Google Scholar 

  126. Lopez-Acevedo, O., Kacprzak, K. A., Akola, J. & Häkkinen, H. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chem. 2, 329 (2010).

    CAS  Google Scholar 

  127. Vericat, C., Benitez, G. A., Grumelli, D. E., Vela, M. E. & Salvarezza, R. C. Thiol-capped gold: from planar to irregular surfaces. J. Phys.: Condens. Matter 20, 184004 (2008).

    Google Scholar 

  128. Dass, A. Faradaurate nanomolecules: a superstable plasmonic 76.3 kDa cluster. J. Am. Chem. Soc. 133, 19259–19261 (2011).

    CAS  PubMed  Google Scholar 

  129. Qian, H., Zhu, Y. & Jin, R. C. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1115307109 (2012).

  130. Zhu, Z-J. et al. Stability of quantum dots in live cells. Nature Chem. 3, 963–968 (2011).

    CAS  Google Scholar 

  131. Akola, J. et al. Materials from thiolate-protected Au25 superatoms: dimers and crystals. J. Phys. Chem C 114, 15986 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to collaborators and co-authors of refs. 35, 38, 56, 75, 77, 78, 79, 80, 81, 82, 99, 121, 125, 126 and 131, and I thank C. J. Ackerson for useful comments on the manuscript. This work has long-standing support from the Academy of Finland and the CSC—the Finnish IT Center for Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Häkkinen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häkkinen, H. The gold–sulfur interface at the nanoscale. Nature Chem 4, 443–455 (2012). https://doi.org/10.1038/nchem.1352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing