Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection of supramolecular chirality by application of rotational and magnetic forces

Abstract

Many essential biological molecules exist only in one of two possible mirror-image structures, either because they possess a chiral unit or through their structure (helices, for example, are intrinsically chiral), but so far the origin of this homochirality has not been unraveled. Here we demonstrate that the handedness of helical supramolecular aggregates formed by achiral molecules can be directed by applying rotational, gravitational and orienting forces during the self-assembly process. In this system, supramolecular chirality is determined by the relative directions of rotation and magnetically tuned effective gravity, but the magnetic orientation of the aggregates is also essential. Applying these external forces only during the nucleation step of the aggregation is sufficient to achieve chiral selection. This result shows that an almost instantaneous chiral perturbation can be transferred and amplified in growing supramolecular self-assemblies, and provides evidence that a falsely chiral influence is able to induce absolute enantioselection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the supramolecular aggregates.
Figure 2: Experimental procedure.
Figure 3: Selection of supramolecular chirality.
Figure 4: Correlation between the observed chirality and the applied physical forces.
Figure 5: Proposed model for the chiral selection and amplification.

Similar content being viewed by others

References

  1. Wagnière, G. H. On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image (Wiley-VCH, 2007).

  2. Luisi, P. L. The Emergence of Life: From Chemical Origins to Synthetic Biology (Cambridge Univ. Press, 2006).

  3. Mason, S. F. Origins of biomolecular handedness. Nature 311, 19–23 (1984).

    Article  CAS  Google Scholar 

  4. Flores, J. J., Bonner, W. A. & Massey, G. A. Asymmetric photolysis of (RS)-leucine with circularly polarized UV light. J. Am. Chem. Soc. 99, 3622–3625 (1977).

    Article  CAS  Google Scholar 

  5. Bailey, J. et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).

    Article  Google Scholar 

  6. Noorduin, W. L. et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nature Chem. 1, 729–732 (2009).

    Article  CAS  Google Scholar 

  7. Berger, R. & Quack, M. Electroweak quantum chemistry of alanine: parity violation in gas and condensed phases. ChemPhysChem 1, 57–60 (2001).

    Article  Google Scholar 

  8. Kondepudi, D. K. & Nelson, G. W. Weak neutral currents and the origin of biomolecular chirality. Nature 314, 438–441 (1985).

    Article  CAS  Google Scholar 

  9. Aquilanti, V. & Maciel, G. S. Observed molecular alignment in gaseous streams and possible chiral effects in vortices and in surface scattering. Orig. Life Evol. Biosph. 36, 435–441 (2006).

    Article  CAS  Google Scholar 

  10. Ribo, J. M., Crusats, J., Sagues, F., Claret, J. & Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001).

    Article  CAS  Google Scholar 

  11. D'Urso, A., Randazzo, R., Lo Taro, L. & Purrello, R. Vortexes and nanoscale chirality. Angew. Chem. Int. Ed. 49, 108–112 (2010).

    Article  CAS  Google Scholar 

  12. Escudero, C., Crusats, J., Díez-Pérez, I., El-Hachemi, Z. & Ribó, J. M. Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulfophenyl)porphyrin. Angew. Chem. Int. Ed. 45, 8032–8035 (2006).

    Article  CAS  Google Scholar 

  13. Arteaga, O. et al. Emergence of supramolecular chirality by flows. ChemPhysChem 11, 3511–3516 (2010).

    Article  CAS  Google Scholar 

  14. Alexander Kuhn, A. & Fischer, P. Absolute asymmetric reduction based on the relative orientation of achiral reactants. Angew. Chem. Int. Ed. 48, 6857–6860 (2009).

    Article  Google Scholar 

  15. Kawasaki, T., Kamimura, S., Amihara, A., Suzuki, K. & Soai, K. Enantioselective C–C bond formation as a result of the oriented prochirality of an achiral aldehyde at the single-crystal face upon treatment with a dialkyl zinc vapour. Angew. Chem. Int. Ed. 50, 6796–6798 (2011).

    Article  CAS  Google Scholar 

  16. Rikken, G. L. J. A. & Raupach, E. Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000).

    Article  CAS  Google Scholar 

  17. Avalos, M. et al. Absolute asymmetric synthesis under physical fields: facts and fictions. Chem. Rev. 98, 2391–2404 (1998).

    Article  CAS  Google Scholar 

  18. Mead, C. A. & Moscowitz, A. Some comments on the possibility of achieving asymmetric synthesis from achiral reactants in a rotating vessel. J. Am. Chem. Soc. 102, 7301–7302 (1980).

    Article  CAS  Google Scholar 

  19. Viedma, C. Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 065504 (2005).

    Article  Google Scholar 

  20. Palmans, A. R. A. & Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007).

    Article  CAS  Google Scholar 

  21. Randazzo, R., Mammana, A., D'Urso, A., Lauceri, R. & Purrello, R. Reversible ‘chiral memory’ in ruthenium tris(phenanthroline)-anionic porphyrin complexes. Angew. Chem. Int. Ed. 47, 9879–9882 (2008).

    Article  CAS  Google Scholar 

  22. Lauceri, R., Raudino, A., Scolaro, L. M., Micali, N. & Purrello, R. From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J. Am. Chem. Soc. 124, 894–895 (2002).

    Article  CAS  Google Scholar 

  23. Onouchi, H., Miyagawa, T., Morino, K. & Yashima, E. Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. Angew. Chem. Int. Ed. 45, 2381–2384 (2006).

    Article  CAS  Google Scholar 

  24. Pasternack, R. F., Giannetto, A., Pagano, P. & Gibbs, E. J. Self-assembly of porphyrins on nucleic-acids and polypeptides. J. Am. Chem. Soc. 113, 7799–7800 (1991).

    Article  CAS  Google Scholar 

  25. Bellacchio, E. et al. Template-imprinted chiral porphyrin aggregates. J. Am. Chem. Soc. 120, 12353–12354 (1998).

    Article  CAS  Google Scholar 

  26. Beaugnon, E. & Tournier, R. Levitation of organic materials. Nature 349, 470 (1991).

    Article  Google Scholar 

  27. Berry, M. V. & Geim, A. K. Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997).

    Article  Google Scholar 

  28. Maret, G. & Dransfeld, K. in Topics in Applied Physics Vol. 57 (ed. Herlach, F.) 143–204 (Springer, 1985).

  29. Boamfa, M. I., Christianen, P. C. M., Engelkamp, H., Nolte, R. J. M. & Maan, J. C. Magnetic fields as an investigation technique and manipulation tool for phthalocyanine molecular aggregates. Adv. Funct. Mater. 14, 261–265 (2004).

    Article  CAS  Google Scholar 

  30. Helmich, F. et al. Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew. Chem. Int. Ed. 49, 3939–3942 (2010).

    Article  CAS  Google Scholar 

  31. Kitahama, Y., Kimura, Y. & Takazawa, K. Study of internal structure of meso-tetrakis (4-sulfonatophenyl) porphine J-aggregates in solution by fluorescence microscope imaging in a magnetic field. Langmuir 22, 7600–7604 (2006).

    Article  CAS  Google Scholar 

  32. Heijna, M. C. R. et al. Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007).

    Article  Google Scholar 

  33. Tsuda, A. et al. Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew. Chem. Int. Ed. 46, 8198–8202 (2007).

    Article  CAS  Google Scholar 

  34. Wolffs, M. et al. Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. Angew. Chem. Int. Ed. 46, 8203–8205 (2007).

    Article  CAS  Google Scholar 

  35. Crusats, J., El-Hachemi, Z. & Ribó, J. M. Hydrodynamic effects on chiral induction. Chem. Soc. Rev. 39, 569–577 (2010).

    Article  CAS  Google Scholar 

  36. Barron, L. D. Reactions of chiral molecules in the presence of a time-non-invariant enantiomorphous influence: a new kinetic principle based on the breakdown of microscopic reversibility. Chem. Phys. Lett. 135, 1–8 (1987).

    Article  CAS  Google Scholar 

  37. Barron, L. D. True and false chirality and absolute asymmetric-synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986).

    Article  CAS  Google Scholar 

  38. Berova, N., Nakanishi, K. & Woody, R. W. Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

  39. Kundu, P. K. & Cohen, I. M. Fluid Mechanics, 4th edn (Academic Press, 2008).

  40. Tabony, J. & Lob, D. Gravitational symmetry breaking in microtubular dissipative structures Proc. Natl Acad. Sci. USA 89, 6948–6952 (1992).

    Article  CAS  Google Scholar 

  41. Glade, N., Beaugnon, E. & Tabony, J. Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys. Chem. 121, 1–6 (2006).

    Article  CAS  Google Scholar 

  42. Shklyarevskiy, I. O. et al. Determination of the molecular arrangement inside cyanine dye aggregates by magnetic orientation, J. Phys. Chem. B 108, 16386–16391 (2004).

    Article  CAS  Google Scholar 

  43. Shklyarevskiy, I. O. et al. High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid–crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005).

    Article  CAS  Google Scholar 

  44. Shklyarevskiy, I. O. et al. Magnetic deformation of self-assembled sexithiophene spherical nanocapsules. J. Am. Chem. Soc. 127, 1112–1113 (2005).

    Article  CAS  Google Scholar 

  45. Barron, L. D. Can a magnetic field induce absolute asymmetric synthesis? Science 266, 1491–1492 (1994).

    Article  CAS  Google Scholar 

  46. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  47. Kitagawa, Y., Segawa, H. & Ishii, K. Magneto-chiral dichroism of organic compounds. Angew. Chem. Int. Ed. 50, 9133–9136 (2011).

    Article  CAS  Google Scholar 

  48. Villari, V. & Micali, N. Light scattering as spectroscopic tool for the study of disperse systems useful in pharmaceutical sciences. J. Pharm. Sci. 97, 1703–1730 (2008).

    Article  CAS  Google Scholar 

  49. Micali, N., Villari, V., Consoli, G. M. L., Cunsolo, F. & Geraci, C. Vesicle-to-micelle transition in aqueous solutions of amphiphilic calixarene derivatives. Phys. Rev. E 73, 051904 (2006).

    Article  Google Scholar 

  50. Kemp, J. C. Polarized Light and its Interaction with Modulated Devices (HINDS International, Hillsboro, 1987).

Download references

Acknowledgements

We thank P.W. Albers for technical assistance with the magnet set-up. This work was supported by EuroMagNET II under EU Contract No. 228043, PRIN 2008- 2008A9C4HZ and 20088NTBKR (Ministero dell'Istruzione, dell'Università e della Ricerca) and by the Stichting voor Fundamenteel Onderzoek der Materie financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and L.M.S. initiated the project. N.M., H.E., P.C.M.C. and L.M.S. designed and realized the experimental set-up for chiral selection. N.M., H.E. and L.M.S. performed the chiral selection experiments. P.G.R. and P.C.M.C. developed the LD set-up and P.G.R. performed these experiments. N.M., H.E., P.G.R., P.C.M.C. and L.M.S. analysed the results. H.E., P.C.M.C. N.M. and L.M.S. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to L. Monsù Scolaro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 803 kb)

Supplementary movie 1

Supplementary movie 1 (WMV 10721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micali, N., Engelkamp, H., van Rhee, P. et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chem 4, 201–207 (2012). https://doi.org/10.1038/nchem.1264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing