Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor

Abstract

The pre-RNA world hypothesis postulates that RNA was preceded in the evolution of life by a simpler genetic material, but it is not known if such systems can fold into structures capable of eliciting a desired function. Presumably, whatever chemistry gave rise to RNA would have produced other RNA analogues, some of which may have preceded or competed directly with RNA. Threose nucleic acid (TNA), a potentially natural derivative of RNA, has received considerable interest as a possible RNA progenitor due to its chemical simplicity and ability to exchange genetic information with itself and RNA. Here, we have applied Darwinian evolution methods to evolve, in vitro, a TNA receptor that binds to an arbitrary target with high affinity and specificity. This demonstration shows that TNA has the ability to fold into tertiary structures with sophisticated chemical functions, which provides evidence that TNA could have served as an ancestral genetic system during an early stage of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of TNA.
Figure 2: Synthesis of TNA libraries by enzyme-mediated primer extension.
Figure 3: Evolution of TNA receptors in vitro.

Similar content being viewed by others

References

  1. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

    Article  CAS  Google Scholar 

  2. Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).

    Article  CAS  Google Scholar 

  3. Schoning, K-U. et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′-2′) oligonucleotide system. Science 290, 1347–1351 (2000).

    Article  CAS  Google Scholar 

  4. Orgel, L. E. A simpler nucleic acid. Science 290, 1306–1307 (2000).

    Article  CAS  Google Scholar 

  5. Ebert, M-O., Mang, C., Krishnamurthy, R., Eschenmoser, A. & Jaun, B. The structure of a TNA–TNA complex in solution: NMR study of the octamer duplex derived from α-(L)-threofuranosyl-(3′-2′)-CGAATTCG. J. Am. Chem. Soc. 130, 15105–15115 (2008).

    Article  Google Scholar 

  6. Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  Google Scholar 

  7. Joyce, G. F. Forty years of in vitro evolution. Angew. Chem. Int. Ed. 46, 6420–6436 (2007).

    Article  CAS  Google Scholar 

  8. Keefe, A. D. & Cload, S. T. SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12, 448–456 (2008).

    Article  CAS  Google Scholar 

  9. Chaput, J. C., Ichida, J. K. & Szostak, J. W. DNA polymerase-mediated DNA synthesis on a TNA template. J. Am. Chem. Soc. 125, 856–857 (2003).

    Article  CAS  Google Scholar 

  10. Chaput, J. C. & Szostak, J. W. TNA synthesis by DNA polymerases. J. Am. Chem. Soc. 125, 9274–9275 (2003).

    Article  CAS  Google Scholar 

  11. Kempeneers, V., Vastmans, K., Rozenski, J. & Herdewijn, P. Recognition of threosyl nucleotides by DNA and RNA polymerases. Nucleic Acids Res. 31, 6221–6226 (2003).

    Article  CAS  Google Scholar 

  12. Ichida, J. K. et al. An in vitro selection system for TNA. J. Am. Chem. Soc. 127, 2802–2803 (2005).

    Article  CAS  Google Scholar 

  13. Horhota, A. et al. Kinetic analysis of an efficient DNA-dependent TNA polymerase. J. Am. Chem. Soc. 127, 7427–7434 (2005).

    Article  CAS  Google Scholar 

  14. Ichida, J. K., Horhota, A., Zou, K., McLaughlin, L. W. & Szostak, J. W. High fidelity TNA synthesis by therminator polymerase. Nucleic Acids Res. 33, 5219–5225 (2005).

    Article  CAS  Google Scholar 

  15. Wu, X., Delgado, G., Krishnamurthy, R. & Eschenmoser, A. 2,6-Diaminopurine in TNA: effect on duplex stabilities and on the efficiency of template-controlled ligations. Org. Lett. 4, 1283–1286 (2002).

    Article  CAS  Google Scholar 

  16. Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  Google Scholar 

  17. Rosenbaum, D. M. & Liu, D. R. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J. Am. Chem. Soc. 125, 13924–13925 (2003).

    Article  CAS  Google Scholar 

  18. Levy, M. & Miller, S. L. The stability of RNA bases: implications for the origin of life. Proc. Natl Acad. Sci. USA 95, 7933–7938 (1998).

    Article  CAS  Google Scholar 

  19. Rogers, J. & Joyce, G. F. A ribozyme that lacks cytidine. Nature 402, 323–325 (1999).

    Article  CAS  Google Scholar 

  20. Lin, L., Hom, D., Lindsay, S. M. & Chaput, J. C. In vitro selection of histone H4 aptamers for recognition imaging microscopy. J. Am. Chem. Soc. 129, 14568–14569 (2007).

    Article  CAS  Google Scholar 

  21. Williams, B. A., Lin, L., Lindsay, S. M. & Chaput, J. C. Evolution of a histone H4–K16 acetyl-specific DNA aptamer. J. Am. Chem. Soc. 131, 6330–6331 (2009).

    Article  CAS  Google Scholar 

  22. Mendonsa, S. D. & Bowser, M. T. In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc. 126, 20–21 (2004).

    Article  CAS  Google Scholar 

  23. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  CAS  Google Scholar 

  24. Kubik, M. F., Stephens, A. W., Schneider, D., Marlar, R. A. & Tasset, D. High-affinity RNA ligands to human α-thrombin. Nucleic Acids Res. 22, 2619–2626 (1994).

    Article  CAS  Google Scholar 

  25. Woese, C. R. The Genetic Code: The Molecular Basis for Genetic Expression (Harper & Row, 1967).

    Google Scholar 

  26. Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–380 (1968).

    Article  CAS  Google Scholar 

  27. Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).

    Article  CAS  Google Scholar 

  28. Gilbert, W. The RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  29. Cech, T. R. The RNA worlds in context. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/10.1101/cshperspect.a006742 (2011).

  30. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).

    Article  CAS  Google Scholar 

  31. Yarus, M. Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/10.1101/cshperspect.a003590 (2011).

  32. Joyce, G. F., Schwartz, A. W., Miller, S. L. & Orgel, L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA 84, 4398–4402 (1987).

    Article  CAS  Google Scholar 

  33. Joyce, G. F. The rise and fall of the RNA world. The New Biologist 3, 399–407 (1991).

    CAS  PubMed  Google Scholar 

  34. Loakes, D. & Holliger, P. Polymerase engineering: towards the encoded synthesis of unnatural polymers. Chem. Commun. 4619–4631 (2009).

  35. Zou, K., Horhota, A., Yu, B., Szostak, J. W. & McLaughlin, L. W. Synthesis of α-L-threofuranosyl nucleoside triphosphates (tNTPs). Org. Lett. 7, 1485–1487 (2005).

    Article  CAS  Google Scholar 

  36. Yu, H., Jiang, B. & Chaput, J. C. Aptamers can discriminate alkaline proteins with high specificity. ChemBioChem 12, 2659–2666 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Chaput laboratory for helpful comments and suggestions. This work was supported by start-up funds from the Biodesign Institute at Arizona State University.

Author information

Authors and Affiliations

Authors

Contributions

J.C. conceived the project and wrote the manuscript. H.Y., S.Z. and J.C. designed the experiments. H.Y. and S.Z. performed the experiments and wrote initial drafts of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to John C. Chaput.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Zhang, S. & Chaput, J. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nature Chem 4, 183–187 (2012). https://doi.org/10.1038/nchem.1241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing