Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst

Subjects

Abstract

In heterogeneous catalysis and electrocatalysis, adsorbed carbon monoxide typically acts as a poison or poisoning intermediate in the oxidation of alcohols. However, gold as an (electro)catalyst often exhibits unexpected properties. Here we show that carbon monoxide irreversibly adsorbed on a Au(111) surface in aqueous alkaline media can act as a promoter for the electrocatalytic oxidation of certain alcohols, in particular methanol. In comparison with bare Au(111), the onset potential for methanol oxidation is significantly lower in the presence of adsorbed CO, and formation of the main methanol oxidation products—formaldehyde and formic acid—is enhanced. By studying the effect of adsorbed CO on the oxidation of other alcohols on gold, we conclude that the presence of adsorbed CO promotes beta-hydrogen elimination, that is, C–H bond breaking. Apart from its importance to gold catalysis, this is an unanticipated example of promotion effects by co-adsorbed small molecules in electrocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Voltammetry of the Au(111) electrode in the absence (black) and presence (red) of CO.
Figure 2: Product identification by HPLC during methanol oxidation on Au(111) and Au(111)–CO.
Figure 3: FTIR spectroscopic characterization of the isotopically labelled methanol on a Au(111)–CO electrode.
Figure 4: Oxidation of 2,2-difluoroethanol on Au(111) and Au(111)–CO electrodes.
Figure 5: Illustration of the mechanism of alcohol oxidation on Au(111) as catalysed by COads.

Similar content being viewed by others

References

  1. Bond, G. C., Louis, C. & Thompson, D. T. Catalysis by Gold (Imperial College Press, 2006).

  2. Haruta, M., Kobayashi, T., Sano, H. & Yamada, M. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C, Chem. Lett. 16, 405–408 (1987).

    Article  Google Scholar 

  3. Haruta, M. Catalysis: gold rush. Nature 437, 1098–1099 (2005).

    Article  CAS  Google Scholar 

  4. Funakawa, A., Yamanaka, I., Takenaka, S. & Otsuka, K., Selectivity control of carbonylation of methanol to dimethyl oxalate and dimethyl carbonate over gold anode by electrochemical potential. J. Am. Chem. Soc. 126, 5346–5347 (2004).

    Article  CAS  Google Scholar 

  5. Ketchie, W., Fang, Y.-L., Wong, M., Murayama, M. & Davis, R. J. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal. 250, 94–101 (2007).

    Article  CAS  Google Scholar 

  6. Zope, B. N., Hibbits, D. D., Neurock, M. & Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330, 74–78 (2010).

    Article  CAS  Google Scholar 

  7. Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  8. Xu, B., Liu, X., Haubrich, J., Madix, R. J. & Friend, C. M. Selectivity control in gold-mediated esterification of methanol. Angew. Chem. Int. Ed. 48, 4206–4209 (2009).

    Article  CAS  Google Scholar 

  9. Xu, B., Liu, X., Haubrich, J. & Friend, C. M. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nature Chem. 2, 61–65 (2010).

    Article  CAS  Google Scholar 

  10. Roberts, J. L. Jr & Sawyer, D. T. Electrochemical oxidation of carbon monoxide at gold electrodes, Electrochim. Acta 10, 989–1000 (1965).

    Article  CAS  Google Scholar 

  11. Kita, H., Nakajima, H. & Hayashi, K. Electrochemical oxidation of CO on Au in alkaline solution. J. Electroanal. Chem. 190, 141–156 (1985).

    Article  CAS  Google Scholar 

  12. Burke, L. D. & Nugent, P. F. The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media. Gold Bull. 31, 39–50 (1998).

    Article  CAS  Google Scholar 

  13. Rodriguez, P., Feliu, J. M. & Koper, M. T. M. Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochem. Commun. 11, 1105–1108 (2009).

    Article  CAS  Google Scholar 

  14. Rodriguez, P., Koverga, A. A. & Koper, M. T. M. Carbon monoxide as a promoter for its own oxidation on a gold electrode. Angew. Chem. Int. Ed. 49, 1241–1243 (2010).

    Article  CAS  Google Scholar 

  15. Rodriguez, P., Garcia-Araez, N. & Koper, M. T. M. Self-promotion mechanism for CO electrooxidation on gold. Phys. Chem. Chem. Phys. 12, 9373–9380 (2010).

    Article  CAS  Google Scholar 

  16. Rodriguez, P., Garcia-Araez, N., Koverga, A. A., Frank, S. & Koper, M. T. M. CO electrooxidation on gold: a combined electrochemical, spectroscopic and DFT study. Langmuir 26, 12425–12432 (2010).

    Article  CAS  Google Scholar 

  17. Beden, B., Leger, J. M. & Lamy, C. in Modern Aspects of Electrochemistry Vol. 22 (eds Bockris, J. O'M., Conway, B. E. & White, R. E.) 97–264 (Plenum Press, 1992).

  18. Lai, S. C. S. et al. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal. Today 154, 92–104 (2010).

    Article  CAS  Google Scholar 

  19. Kwon, Y., Lai, S. C. S., Rodriguez, P. & Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133, 6914–6917 (2011).

    Article  CAS  Google Scholar 

  20. Borkowska, Z., Tymosiak-Zielinska, A. & Shul, G. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta 49, 1209–1220 (2004).

    Article  CAS  Google Scholar 

  21. Tremiliosi-Filho, G. et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. J. Electroanal. Chem. 444, 31–39 (1998).

    Article  CAS  Google Scholar 

  22. Kwon, Y. & Koper, M. T. M. Combining voltammetry with HPLC: application to electrooxidation of glycerol. Anal. Chem. 82, 5420–5424 (2010).

    Article  CAS  Google Scholar 

  23. Koper, M. T. M., Lai, S. C. S. & Herrero, E. in Fuel Cell Catalysis (ed. Koper, M. T. M.) 159–207 (Wiley, 2009).

  24. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chem. 1, 466–473 (2009).

    Article  CAS  Google Scholar 

  25. Strmcnik, D. et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature Chem. 2, 880–885 (2010).

    Article  CAS  Google Scholar 

  26. Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 128, 13332–13333 (2006).

    Article  CAS  Google Scholar 

  27. Stoffelsma, C. et al. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations. J. Am. Chem. Soc. 132, 16127–16133 (2010).

    Article  CAS  Google Scholar 

  28. Hernandez, J., Solla-Gullon, J., Herrero, E., Aldaz, A. & Feliu, J. M. Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim. Acta 52, 1662–1669 (2006).

    Article  CAS  Google Scholar 

  29. Avramov-Ivic, M., Adzic, R. R., Bewick, A. & Razaq, M. An investigation of the oxidation of formaldehyde on noble metal electrodes in alkaline solutions by electrochemically modulated infrared spectroscopy. J. Electroanal. Chem. 240, 161–164 (1988).

    Article  CAS  Google Scholar 

  30. Beltramo, G. L., Shubina, T. E. & Koper, M. T. M. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT. ChemPhysChem 6, 2597–2606 (2005).

    Article  CAS  Google Scholar 

  31. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds 232 (Wiley, 1986).

  32. Gribov, L. A., Novakov, I. A., Pavlyuchko, A. I. & Shumovskii, O. Y. Spectroscopic calculation of the bond-dissociation energy of CH bonds in fluoro derivatives of methane, ethane, ethene, propene, and benzene. J. Struct. Chem. 48, 400–406 (2007).

    Article  CAS  Google Scholar 

  33. Gellman, A. J. & Dai, Q. The mechanism of β-hydride elimination in adsorbed alkoxides. J. Am. Chem. Soc. 115, 714–722 (1993).

    Article  CAS  Google Scholar 

  34. Chen, A. & Lipkowski, J. Electrochemical and IR spectroscopic studies of OH adsorption at the Au(111) electrode surface. J. Phys. Chem. B 103, 682–691 (1999).

    Article  CAS  Google Scholar 

  35. Zhang, T. et al. Stabilising CO on Au with NO2: electronegative species as promoters on coinage metals? Phys. Rev. Lett. 95, 266102 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

P.R. and M.T.M.K. acknowledge financial support from the Netherlands Organization for Scientific Research (NWO) through VENI and VICI grants, respectively, and the European Commission (through FP7 Initial Training Network ‘ELCAT’, grant agreement no. 214936-2). The research of Y.K. is performed within the framework of the CatchBio programme. The authors gratefully acknowledge support from the Smart Mix Program of The Netherlands Ministry of Economic Affairs and The Netherlands Ministry of Education, Culture and Science. The purchase of the HPLC and fraction collection system was made possible through an ‘NWO-Middelgroot’ equipment grant awarded to M.T.M.K. by NWO.

Author information

Authors and Affiliations

Authors

Contributions

P.R. and M.T.M.K. conceived and designed the experiments. P.R. performed the electrochemistry and FTIR experiments. P.R. and Y.K. performed the HPLC experiments. All authors contributed to the data analysis. P.R. and M.T.M.K. co-wrote the paper.

Corresponding author

Correspondence to Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3021 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, P., Kwon, Y. & Koper, M. The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nature Chem 4, 177–182 (2012). https://doi.org/10.1038/nchem.1221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing