Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macroscopic self-assembly through molecular recognition

Abstract

Molecular recognition plays an important role in nature, with perhaps the best known example being the complementarity exhibited by pairs of nucleobases in DNA. Studies of self-assembling and self-organizing systems based on molecular recognition are often performed at the molecular level, however, and any macroscopic implications of these processes are usually far removed from the specific molecular interactions. Here, we demonstrate that well-defined molecular-recognition events can be used to direct the assembly of macroscopic objects into larger aggregated structures. Acrylamide-based gels functionalized with either host (cyclodextrin) rings or small hydrocarbon-group guest moieties were synthesized. Pieces of host and guest gels are shown to adhere to one another through the mutual molecular recognition of the cyclodextrins and hydrocarbon groups on their surfaces. By changing the size and shape of the host and guest units, different gels can be selectively assembled and sorted into distinct macroscopic structures that are on the order of millimetres to centimetres in size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of host and guest gels.
Figure 2: Macroscopic self-assembly between CD host gels and guest gels.
Figure 3: Visualization of specific molecular recognition events on a macroscopic scale.
Figure 4: Proposed structures of the complexes formed between CDs and guests attached to a gel.

Similar content being viewed by others

References

  1. Cram, D. J. The design of molecular hosts, guests and their complexes. Science 240, 760–767 (1988).

    Article  CAS  Google Scholar 

  2. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, 1995).

    Book  Google Scholar 

  3. Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).

    Article  CAS  Google Scholar 

  4. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  CAS  Google Scholar 

  5. Fujita, M. et al. Self-assembly of ten molecules into a nanometer-sized organic host frameworks. Nature 378, 469–471 (1995).

    Article  CAS  Google Scholar 

  6. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  CAS  Google Scholar 

  7. Lehn, J.-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    Article  CAS  Google Scholar 

  8. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  Google Scholar 

  9. Harada, A., Li, J. & Kamachi, M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992).

    Article  CAS  Google Scholar 

  10. Hirschberg, J. H. K. K. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).

    Article  CAS  Google Scholar 

  11. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sibesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    Article  CAS  Google Scholar 

  12. Harada, A., Hashidzume, A., Yamaguchi, H. & Takashima, Y. Polymeric rotaxanes. Chem. Rev. 109, 5974–6023 (2009).

    Article  CAS  Google Scholar 

  13. Cordier, P., Tournihac, F., Soulie-Ziakovic, C. & Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  Google Scholar 

  14. Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1443 (2005).

    Article  CAS  Google Scholar 

  15. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  16. Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article  CAS  Google Scholar 

  17. Rosen, B. M. et al. Dendron-mediated self-assembly, disassembly and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009).

    Article  CAS  Google Scholar 

  18. Douglas, E. S. et al. Self-assembled cellular microarrays patterned using DNA barcodes. Lab Chip 7, 1442–1448 (2007).

    Article  CAS  Google Scholar 

  19. Gartnera, Z. J. & Bertozzi, C. R. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc. Natl Acad. Sci. USA 106, 4606–4610 (2009).

    Article  Google Scholar 

  20. Grzybowski, B. A., Jiang, X., Stone, H. A. & Whitesides, G. M. Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid–air interface: macroscopic, two-dimensional classical artificial atoms and molecules. Phys. Rev. E 64, 011603 (2001).

    Article  CAS  Google Scholar 

  21. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  22. Boncheva, M. et al. Magnetic self-assembly of three-dimensional surfaces from planar sheets. Proc. Natl Acad. Sci. USA 102, 3924–3929 (2005).

    Article  CAS  Google Scholar 

  23. Grzybowski, B. A. et al. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nature Mater. 2, 241–245 (2003).

    Article  CAS  Google Scholar 

  24. McCarty, L. S., Winkleman, A. & Whitesides, G. M. Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew. Chem. Int. Ed. 46, 204–209 (2005).

    Google Scholar 

  25. Terfort, A., Bowden, N. & Whitesides, G. M. Three-dimensional self-assembly of millimeter-scale components. Nature 386, 162–164 (1997).

    Article  CAS  Google Scholar 

  26. Lahann, J. et al. A reversibly switching surface. Science 299, 371–374 (2003).

    Article  CAS  Google Scholar 

  27. Katz, E., Lioubashevsky, O. & Willner, I. Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc. 126, 15520–15532 (2004).

    Article  CAS  Google Scholar 

  28. Yu, H., Iyoda, T. & Ikeda, T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem. Soc. 128, 11010–11011 (2006).

    Article  CAS  Google Scholar 

  29. Borden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 223–225 (1997).

    Article  Google Scholar 

  30. Kim, E. & Whitesides, G. M. Imbibition and flow of wetting liquids in noncircular capillaries. J. Phys. Chem. B 101, 855–863 (1997).

    Article  CAS  Google Scholar 

  31. Choi, I. S., Bowden, N. & Whitesides, G. M. Macroscopic, hierarchical, two-dimensional self-assembly. Angew. Chem. Int. Ed. 38, 3078–3081 (1999).

    Article  CAS  Google Scholar 

  32. Pisula, W. et al. From macro- to nanoscopic templating with nanographenes. J. Am. Chem. Soc. 128, 14424–14425 (2006).

    Article  CAS  Google Scholar 

  33. Stoddart, J. F. Thither supramolecular chemistry? Nature Chem. 1, 14–15 (2009).

    Article  CAS  Google Scholar 

  34. Harada, A., Adachi, H., Kawaguchi, Y. & Kamachi, M. Recognition of alkyl groups on a polymer chain by cyclodextrins. Macromolecules 30, 5181–5182 (1997).

    Article  CAS  Google Scholar 

  35. Born, M. & Ritter, H. Side-chain polyrotaxanes with a tandem structure based on cyclodextrins and a polymethacrylate main chain. Angew. Chem. Int. Ed. 34, 309–311 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Inoue and O. Urakawa (Department of Macromolecular Science, Graduate School of Science, Osaka University) for their help in the measurements of stress and strain of gels. We gratefully acknowledge the financial support from the Japan Science and Technology Agency (JST), the Core Research for Evolutional Science and Technology (CREST) program.

Author information

Authors and Affiliations

Authors

Contributions

A. Harada conceived the project and designed the experiments. R.K. contributed to the synthesis of the host and guest gels. A. Harada, Y.T., A. Hashidzume and H.Y. analysed the data and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Akira Harada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 817 kb)

Supplementary information

Supplementary information (WMV 943 kb)

Supplementary information

Supplementary information (WMV 1433 kb)

Supplementary information

Supplementary information (WMV 1262 kb)

Supplementary information

Supplementary information (WMV 1911 kb)

Supplementary information

Supplementary information (WMV 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, A., Kobayashi, R., Takashima, Y. et al. Macroscopic self-assembly through molecular recognition. Nature Chem 3, 34–37 (2011). https://doi.org/10.1038/nchem.893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing