Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequence-independent and rapid long-range charge transfer through DNA

Abstract

Interest in using DNA as a building block for nanoelectronic sensors and devices stems from its efficient hole-conducting properties and the relative ease with which it can be organized into predictable nanometre-sized two- and three-dimensional structures. However, because a hole migrates along DNA through the highest occupied molecular orbital of the guanine bases, its conductivity decreases as the adenine–thymine base-pair content increases. This means that there are limitations on what sequences can be used to construct functional nanoelectronic circuits, particularly those rich in adenine–thymine pairs. Here we show that the charge-transfer efficiency can be dramatically increased in a manner independent of guanine–cytosine content by adjusting the highest occupied molecular orbital level of the adenine–thymine base pair to be closer to that of the guanine–cytosine pair. This is achieved by substituting the N7 nitrogen atom of adenine with a C–H group to give 7-deazaadenine, which does not disturb the complementary base pairing observed in DNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for the measurement of the rate of long-range charge transfer through DNA duplexes.
Figure 2: Charge transfer through A-tract sequences assisted by Z.
Figure 3: Charge transfer through A-tract sequences assisted by guanine and Z.
Figure 4: Charge transfer through G–C and A–T mixed random sequences over 100 Å promoted by Z.

Similar content being viewed by others

References

  1. Liao, S. & Seeman, N. C. Translation of DNA signals into polymer assembly instructions. Science 306, 2072–2074 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  3. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  4. Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000).

    CAS  PubMed  Google Scholar 

  5. Cohen, H., Nogues, C., Naaman, R. & Porath, D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl Acad. Sci. USA 102, 11589–11593 (2005).

    CAS  PubMed  Google Scholar 

  6. Xu, B., Zhang, P., Li, X. & Tao, N. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4, 1105–1108 (2004).

    CAS  Google Scholar 

  7. Hihath, J., Xu, B., Zhang, P. & Tao, N. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl Acad. Sci. USA 102, 16979–16983 (2005).

    CAS  PubMed  Google Scholar 

  8. Guo, X., Gorodetsky, A. A., Hone, J., Barton, J. K. & Nuckolls, C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotech. 3, 163–167 (2008).

    CAS  Google Scholar 

  9. Okamoto, A., Tanaka, K. & Saito, I. Rational design of a DNA wire possessing an extremely high hole transport ability. J. Am. Chem. Soc. 125, 5066–5071 (2003).

    CAS  PubMed  Google Scholar 

  10. Meggers, E., Michel-Beyerle, M. E. & Giese, B. Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120, 12950–12955 (1998).

    CAS  Google Scholar 

  11. Nakatani, K., Dohno, C. & Saito, I. Chemistry of sequence-dependent remote guanine oxidation: Photoreaction of duplex DNA containing cyanobenzophenone-substituted uridine. J. Am. Chem. Soc. 121, 10854–10855 (1999).

    CAS  Google Scholar 

  12. Bixon, M. et al. Long-range charge hopping in DNA. Proc. Natl Acad. Sci. USA 96, 11713–11716 (1999).

    CAS  PubMed  Google Scholar 

  13. Lewis, F. D. et al. Direct measurement of hole transport dynamics in DNA. Nature 406, 51–53 (2000).

    CAS  PubMed  Google Scholar 

  14. Berlin, Y. A., Burin, A. L. & Ratner, M. A. Charge hopping in DNA. J. Am. Chem. Soc. 123, 260–268 (2001).

    CAS  PubMed  Google Scholar 

  15. Lewis, F. D., Liu, J., Zuo, X., Hayes, R. T. & Wasielewski, M. R. Dynamics and energetics of single-step hole transport in DNA hairpins. J. Am. Chem. Soc. 125, 4850–4861 (2003).

    CAS  PubMed  Google Scholar 

  16. Takada, T., Kawai, K., Fujitsuka, M. & Majima, T. Direct observation of hole transfer through double-helical DNA over 100 angstroms. Proc. Natl Acad. Sci. USA 101, 14002–14006 (2004).

    CAS  PubMed  Google Scholar 

  17. Takada, T., Kawai, K., Fujitsuka, M. & Majima, T. Contributions of the distance-dependent reorganization energy and proton-transfer to the hole-transfer process in DNA. Chem. Eur. J. 11, 3835–3842 (2005).

    CAS  PubMed  Google Scholar 

  18. Osakada, Y., Kawai, K., Fujitsuka, M. & Majima, T. Charge transfer through DNA nanoscaled assembly programmable with DNA building blocks. Proc. Natl Acad. Sci. USA 103, 18072–18076 (2006).

    CAS  PubMed  Google Scholar 

  19. O'Neill, M. A. & Barton, J. K. DNA charge transport: Conformationally gated hopping through stacked domains. J. Am. Chem. Soc. 126, 11471–11483 (2004).

    CAS  PubMed  Google Scholar 

  20. Zeidan, T. A. et al. Charge-transfer and spin dynamics in DNA hairpin conjugates with perylenediimide as a base-pair surrogate. J. Am. Chem. Soc. 130, 13945–13955 (2008).

    CAS  PubMed  Google Scholar 

  21. Conwell, E. M., Bloch, S. M., McLaughlin, P. M. & Basko, D. M. Duplex polarons in DNA. J. Am. Chem. Soc. 129, 9175–9181 (2007).

    CAS  PubMed  Google Scholar 

  22. Henderson, P. T., Jones, D., Hampikian, G., Kan, Y. Z. & Schuster, G. B. Long-distance charge transport in duplex DNA: The phonon-assisted polaron-like hopping mechanism. Proc. Natl Acad. Sci. USA 96, 8353–8358 (1999).

    CAS  PubMed  Google Scholar 

  23. Giese, B., Amaudrut, J., Kohler, A. K., Spormann, M. & Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    CAS  PubMed  Google Scholar 

  24. Bixon, M. & Jortner, J. Charge transport in DNA via thermally induced hopping. J. Am. Chem. Soc. 123, 12556–12567 (2001).

    CAS  PubMed  Google Scholar 

  25. Berlin, Y. A., Burin, A. L. & Ratner, M. A. Elementary steps for charge transport in DNA: Thermal activation vs. tunneling. Chem. Phys. 275, 61–74 (2002).

    CAS  Google Scholar 

  26. Taniguchi, M. & Kawai, T. DNA electronics. Physica E 33, 1–12 (2006).

    CAS  Google Scholar 

  27. Nakatani, K., Dohno, C. & Saito, I. Modulation of DNA-mediated hole-transport efficiency by changing superexchange electronic interaction. J. Am. Chem. Soc. 122, 5893–5894 (2000).

    CAS  Google Scholar 

  28. Kelley, S. O. & Barton, J. K. Electron transfer between bases in double helical DNA. Science 283, 375–381 (1999).

    CAS  PubMed  Google Scholar 

  29. Voityuk, A. A. & Roesch, N. Quantum chemical modeling of electron hole transfer through pi stacks of normal and modified pairs of nucleobases. J. Phys. Chem. B 106, 3013–3018 (2002).

    CAS  Google Scholar 

  30. Peng, X., Li, H. & Seela, F. pH-dependent mismatch discrimination of oligonucleotide duplexes containing 2′-deoxytubercidin and 2- or 7-substituted derivatives: Protonated base pairs formed between 7-deazapurines and cytosine. Nucleic Acids Res. 34, 5987–6000 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rogers, J. E. & Kelly, L. A. Nucleic acid oxidation mediated by naphthalene and benzophenone imide and diimide derivatives: Consequences for DNA redox chemistry. J. Am. Chem. Soc. 121, 3854–3861 (1999).

    CAS  Google Scholar 

  32. Takada, T., Kawai, K., Fujitsuka, M. & Majima, T. Rapid long-distance hole transfer through consecutive adenine sequence. J. Am. Chem. Soc. 128, 11012–11013 (2006).

    CAS  PubMed  Google Scholar 

  33. Kawai, K., Osakada, Y., Sugimoto, A., Fujitsuka, M. & Majima, T. Hole transfer rates in A-form DNA/2-OMeRNA hybrid. Chem. Eur. J. 13, 2386–2391 (2007).

    CAS  PubMed  Google Scholar 

  34. Osakada, Y., Kawai, K., Fujitsuka, M. & Majima, T. Charge transfer in DNA assemblies: effects of sticky ends. Chem. Commun. 2656–2658 (2008).

  35. Osakada, Y., Kawai, K., Fujitsuka, M. & Majima, T. Kinetics of charge transfer in DNA containing a mismatch. Nucleic Acids Res. 36, 5562–5570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawai, K., Osakada, Y., Fujitsuka, M. & Majima, T. Mechanism of charge separation in DNA by hole transfer through consecutive adenines. Chem. Eur. J. 14, 3721–3726 (2008).

    CAS  PubMed  Google Scholar 

  37. Tierney, M. T., Sykora, M., Khan, S. I. & Grinstaff, M. W. Photoinduced electron transfer in an oligodeoxynucleotide duplex: Observation of the electron-transfer intermediate. J. Phys. Chem. B 104, 7574–7576 (2000).

    CAS  Google Scholar 

  38. Boon, E. M., Ceres, D. M., Drummond, T. G., Hill, M. G. & Barton, J. K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnol. 18, 1096–1100 (2000).

    CAS  Google Scholar 

  39. Giese, B. & Wessely, S. The influence of mismatches on long-distance charge transport through DNA. Angew. Chem. Int. Ed. 39, 3490–3491 (2000).

    CAS  Google Scholar 

  40. Bhattacharya, P. K. & Barton, J. K. Influence of intervening mismatches on long-range guanine oxidation in DNA duplexes. J. Am. Chem. Soc. 123, 8649–8656 (2001).

    CAS  PubMed  Google Scholar 

  41. Schlientz, N. W. & Schuster, G. B. Long-distance radical cation migration in duplex DNA: The effect of contiguous AA and TT mismatches on efficiency and mechanism. J. Am. Chem. Soc. 125, 15732–15733 (2003).

    CAS  PubMed  Google Scholar 

  42. Yavin, E. et al. Protein–DNA charge transport: Redox activation of a DNA repair protein by guanine radical. Proc. Natl Acad. Sci. USA 102, 3546–3551 (2005).

    CAS  PubMed  Google Scholar 

  43. Takada, T., Kawai, K., Fujitsuka, M. & Majima, T. High-yield generation of a long-lived charge-separated state in diphenylacetylene-modified DNA. Angew. Chem. Int. Ed. 45, 120–122 (2006).

    CAS  Google Scholar 

  44. Kawai, K., Osakada, Y., Fujitsuka, M. & Majima, T. Consecutive adenine sequences are potential targets in photosensitized DNA damage. Chem. Biol. 12, 1049–1054 (2005).

    CAS  PubMed  Google Scholar 

  45. Kawai, K., Osakada, Y., Takada, T., Fujitsuka, M. & Majima, T. Lifetime regulation of the charge-separated state in DNA by modulating the oxidation potential of guanine in DNA through hydrogen bonding. J. Am. Chem. Soc. 126, 12843–12846 (2004).

    CAS  PubMed  Google Scholar 

  46. Kawai, K. et al. Two-color two-laser DNA damaging. Angew. Chem. Int. Ed. 43, 2406–2409 (2004).

    CAS  Google Scholar 

  47. Takada, T. et al. Charge separation in DNA via consecutive adenine hopping. J. Am. Chem. Soc. 126, 1125–1129 (2004).

    CAS  PubMed  Google Scholar 

  48. Kawai, K., Takada, T., Tojo, S. & Majima, T. Kinetics of weak distance-dependent hole transfer in DNA by adenine-hopping mechanism. J. Am. Chem. Soc. 125, 6842–6843 (2003).

    CAS  PubMed  Google Scholar 

  49. Kawai, K. et al. Long-lived charge-separated state leading to DNA damage through hole transfer. J. Am. Chem. Soc. 125, 16198–16199 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Nakatani of SANKEN for the MALDI mass measurement. This work was partly supported by a Grant-in-Aid for Scientific Research (Project 17105005 and others) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and H.K. conceived and designed the experiments. H.K. performed the experiments. K.K., H.K. and T.M. analysed the data. H.K. and Y.O. contributed materials/analysis tools. K.K. and T.M. co-wrote the paper.

Corresponding authors

Correspondence to Kiyohiko Kawai or Tetsuro Majima.

Supplementary information

Supplementary information

Supplementary information (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, K., Kodera, H., Osakada, Y. et al. Sequence-independent and rapid long-range charge transfer through DNA. Nature Chem 1, 156–159 (2009). https://doi.org/10.1038/nchem.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing