Articles in 2013

Filter By:

  • Mechanistic studies of reductive elimination that forms aryl–aryl bonds from simple mono- and dinuclear gold phosphine complexes are disclosed. The observed rates for reductive elimination are unusually fast, even at temperatures as low as –52 °C, providing insight into the fundamental reactivity of oxidized organogold complexes.

    • William J. Wolf
    • Matthew S. Winston
    • F. Dean Toste
    Article
  • Chemical validation of new drug targets is urgently required to help develop new antimalarial therapies. Here, chemical proteomic tools and selective enzyme inhibitors are combined to study protein lipidation in human malaria parasites, leading to in vitro and in vivo validation of the enzyme N-myristoyltransferase as a drug target.

    • Megan H. Wright
    • Barbara Clough
    • Edward W. Tate
    Article
  • One-pot processes in which a single catalyst carries out several reactions are attractive, but typically promote the formation of by-products as well as the desired ones, and are not amenable to optimization of the individual transformations. Now, these issues have been overcome by separating the catalytic processes in time.

    • Sarah Abou-Shehada
    • Jonathan M. J. Williams
    News & Views
  • Fluorine imparts many drugs with beneficial properties, however, the synthesis of fluorinated complex natural products is challenging. Biosynthetic strategies and recent experimental precedents have paved the way for bioengineered fluorinated polyketides.

    • Peter A. Jordan
    • Bradley S. Moore
    News & Views
  • Quantitatively studying how the rate of a chemical reaction is affected by a reactant's atomic-scale environment is extremely challenging. This has now been achieved at the single-molecule level using scanning tunnelling microscopy to monitor tautomerization in an atomically well-defined environment.

    • Peter Liljeroth
    News & Views
  • Markku Räsänen remembers making a neutral compound featuring argon, and ponders on the reactivity of this inert element.

    • Markku Räsänen
    In Your Element
  • Michelle Francl takes a serious look at whether we should indulge in scientific humour.

    • Michelle Francl
    Thesis
  • Replication of the HIV-1 viral genome can be inhibited by a protein known as APOBEC3G, via two seemingly contradictory mechanisms. Now, the molecular conundrum behind these two processes has been resolved.

    • Graeme A. King
    • Gijs J. L. Wuite
    News & Views
  • Lengthy molecular dynamics simulations of complex systems at the atomic scale usually require supercomputers. Now, by stitching together many shorter independent simulations run 'in the cloud', this requirement has been circumvented, allowing two milliseconds of the dynamics of a G-protein-coupled receptor to be simulated.

    • Xavier Deupi
    News & Views
  • Polynitrogen compounds are of interest on a fundamental level and as potential high-energy-density materials. A crystalline solid that consists of two isomeric forms of N8 molecules held together by weak van der Waals interactions has now been predicted to exist, and to be stable even at low pressures.

    • Barak Hirshberg
    • R. Benny Gerber
    • Anna I. Krylov
    Article
  • Graphene oxide sheets hold promise for a variety of applications but are disordered and inhomogeneous on synthesis. Although processes to resolve this exist they typically remove oxygen groups, affecting the sheets’ properties. Now, a scalable, mild thermal annealing procedure has been devised that enhances the optical and electronic properties of graphene oxide sheets through phase transformation, while preserving their oxygen functionality.

    • Priyank V. Kumar
    • Neelkanth M. Bardhan
    • Jeffrey C. Grossman
    Article
  • Two milliseconds of molecular dynamics simulations of a major drug-target G-protein-coupled receptor (GPCR) has been carried out using Google's Exacycle cloud computing platform. Markov state models were used to aggregate independent simulations into a statistical model that provides an atomistic description of GPCR ligand-modulated activation pathways.

    • Kai J. Kohlhoff
    • Diwakar Shukla
    • Vijay S. Pande
    Article
  • Identification of glycosylation patterns is complicated by the lack of sensitive analytical techniques that can distinguish between epimeric carbohydrates. It has now been shown that ion-mobility tandem mass spectrometry of ions derived from glycopeptides and oligosaccharides enables glycan stereochemistry to be determined, highlighting the potential of this technique for sequencing complex carbohydrates on cell surfaces.

    • P. Both
    • A. P. Green
    • C. E. Eyers
    Article
  • Liquid-phase-processable graphene nanoribbons (GNRs) over 200 nm long and with well-defined structures have now been synthesized by a bottom-up method, and are found to have a large optical bandgap of 1.88 eV. Scanning probe microscopy revealed highly ordered self-assembled monolayers of the GNRs, and the high intrinsic charge-carrier mobility of individual ribbons was characterized by terahertz spectroscopy.

    • Akimitsu Narita
    • Xinliang Feng
    • Klaus Müllen
    Article