Browse Articles

Filter By:

  • Despite the widespread utility of ruthenium catalysts, many protocols for their use require high temperatures or light irradiation. Now, the synthesis of an air- and moisture-stable ruthenium precatalyst has been reported. This versatile catalyst drives an array of transformations and enables rapid screening and optimization of reactions, revealing previously unknown in situ generated ruthenium complexes.

    • Gillian McArthur
    • Jamie H. Docherty
    • Igor Larrosa
    ArticleOpen Access
  • Lithium metal batteries are an attractive energy storage technology, but their development relies on the complex interplay between the components’ chemical, physical and mechanical properties. Now, selective methylation of dimethoxyethane ether electrolytes is shown to improve electrolyte, electrode and solid–electrolyte interphase stabilities to enable high-performance 4.3 V lithium metal batteries.

    • Ai-Min Li
    • Oleg Borodin
    • Chunsheng Wang
    Article
  • α-Amino acids possessing β-stereocentres are difficult to synthesize. Now, an iridium-catalysed protocol allows the direct upconversion of simple alkenes and glycine derivatives to give β-substituted α-amino acids with exceptional levels of regio- and stereocontrol. The reaction design is based on exploiting the native directing ability of a glycine-derived N–H unit to facilitate enolization of the adjacent carbonyl.

    • Fenglin Hong
    • Timothy P. Aldhous
    • John F. Bower
    ArticleOpen Access
  • The redox properties of visible-light-absorbing photosensitizers are limited by the energy of visible photons, but methods using sensitization-initiated electron transfer have recently been developed to address these challenges. Now a multiphoton dual-catalyst strategy has been used to enable the enantioselective de Mayo reaction for the synthesis of enantioenriched 1,5-diketones.

    • Xin Sun
    • Yilin Liu
    • Zhiyong Jiang
    Article
  • Photoinduced electron transfer (PET) occurs in many chemical processes and has various applications. Here ionizing radiation was used to trigger PET for controlled drug release from an antibody–drug conjugate using a picolinium cage. The radiotherapy-activated prodrug system demonstrated high antitumour efficacy and minimal side effects.

    • Qunfeng Fu
    • Zhi Gu
    • Zhibo Liu
    Article
  • Key molecular features that drive protein liquid–liquid phase separation (LLPS) for biomolecular condensate have been reported. A spectrum of additional interactions that influence protein LLPS and material properties have now been characterized. These interactions extend beyond a limited set of residue types and can be modulated by environmental factors such as temperature and salt concentration.

    • Shiv Rekhi
    • Cristobal Garcia Garcia
    • Jeetain Mittal
    Article
  • Biological and synthetic catalysts often utilize iron in high oxidation states (+IV and greater) to perform challenging molecular transformations. A coordination complex featuring an Fe(VII) ion has now been synthesized through sequential oxidations of nonheme iron–nitrido precursors.

    • Adam T. Fiedler
    • Laxmi Devkota
    News & Views
  • Lack of standardization, transparency and interaction creates information gaps in scientific publications. Through strategies such as voluntary information management, standardization of reaction set-ups, and smart screening approaches, this Perspective gives guidelines on how to improve data management in publications reporting chemical reactions, focusing on reproducibility, standardization and evaluation of synthetic transformations.

    • Malte L. Schrader
    • Felix R. Schäfer
    • Frank Glorius
    Perspective
  • Negatively charged lysine acylations—malonylation, succinylation and glutarylation—impact protein structure and function, which can affect cellular processes. Now temporarily masked thioester derivatives of succinylation and glutarylation can be used for site-specific modification of diverse bacterial and mammalian proteins, which can facilitate the study of how these lysine modifications impact enzymatic activity and control protein–protein and protein–DNA interactions.

    • Maria Weyh
    • Marie-Lena Jokisch
    • Kathrin Lang
    ArticleOpen Access
  • Chiral amines possessing a stereogenic carbon atom bearing three carbon substituents and one nitrogen substituent are challenging structural motifs to prepare enantioselectively. Now, such motifs have been accessed in high enantiopurities by asymmetric Cu-catalysed propargylic amination using sterically confined ligands.

    • Joshua D. Sieber
    News & Views
  • Expansion of the genetic code can enable precise manipulation of proteins through selective functionalization of specific residues. Now, control of tryptophan interactions in proteins can be established by encoding of a vinyl-caged tryptophan analogue that can be selectively decaged to rescue protein activity.

    • Aidan K. Haney
    • T. Ashton Cropp
    News & Views
  • Accessing longer-wavelength emitting organic fluorophores is critical for diagnostic imaging. Here a series of silicon-RosIndolizine fluorophores with emission maxima at 1,300 nm, 1,550 nm and 1,700 nm were synthesized. The fluorophores generate high-resolution in vivo fluorescence images in mice and establish design principles for future shortwave-infrared fluorophore designs.

    • William E. Meador
    • Eric Y. Lin
    • Jared H. Delcamp
    Article
  • Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H2 evolution.

    • Isaac N. Cloward
    • Tianfei Liu
    • Alexander J. M. Miller
    Article
  • Time-resolved femtosecond crystallography (TR-SFX) is a powerful technique to monitor structural transitions in protein crystals at the atomic level, but its use in non-protein synthetic materials remains limited. Now TR-SFX has been used to visualize the structural dynamics of metal–organic frameworks, showing the potential of this tool to study the dynamic motion of crystalline porous materials.

    • Jaedong Kang
    • Yunbeom Lee
    • Hyotcherl Ihee
    ArticleOpen Access
  • Ribosomally synthesized and post-translationally modified peptides (RiPPs) can have vast structural diversity and biological functions enabled by disparate post-translational modifications (PTMs). However, unconventional PTMs derived from non-RiPP biosynthesis are rarely reported. Now a class of lipopeptides featuring a distinct fatty-acyl-modified N terminus and the responsible RiPP/fatty-acid hybrid biosynthetic machinery have been characterized.

    • Hengqian Ren
    • Chunshuai Huang
    • Huimin Zhao
    Article
  • We developed a high-throughput, unbiased strategy for the identification of endogenous biomolecular condensates by merging cell volume compression, sucrose density gradient centrifugation and quantitative mass spectrometry. We demonstrated the performance of this strategy by identifying both global condensate proteins and those responding to specific biological processes on a proteome-wide scale.

    Research Briefing
  • Enantioenriched α-disubstituted α-ethynylamines are valuable synthons to chiral α-tertiary amines and azacycles, but their facile access remains challenging. Now, sterically confined pyridinebisoxazoline ligands have been developed to facilitate highly enantioselective Cu(I)-catalysed propargylic amination of both aliphatic and aryl ketone-derived propargylic carbonates to give α-tertiary ethynylamines. Related tandem sequences are reported to synthesize quaternary azacycles.

    • Zheng Zhang
    • Ying Sun
    • Jian Zhou
    Article
  • The spontaneous recombination of photogenerated radicals surrounded by solvent molecules is an important energy-wasting elementary step in photoredox reactions. Now the decisive role that cage escape plays in these reactions is shown in three benchmark photocatalytic reactions, with quantitative correlations observed between photoredox product formation rates and cage escape quantum yields.

    • Cui Wang
    • Han Li
    • Oliver S. Wenger
    ArticleOpen Access
  • High-throughput proteome-wide methods for identifying endogenous proteins that phase separate or partition into condensates during certain physiological events are needed but remain a challenge. Now, a high-throughput, unbiased and quantitative strategy can identify endogenous biomolecular condensates and screen proteins involved in phase separation on a proteome-wide scale.

    • Pengjie Li
    • Peng Chen
    • Yiwei Li
    Article
  • The underlying mechanism for how heterotypic protein–RNA interactions modulate the liquid to amyloid transition of hnRNPA1A, a protein involved in amyotrophic lateral sclerosis, has so far remained elusive. Now characterization of hnRNPA1A condensate formation and aggregation in vitro reveals that the RNA/protein stoichiometry affects the molecular pathways leading to amyloid formation.

    • Chiara Morelli
    • Lenka Faltova
    • Paolo Arosio
    ArticleOpen Access