Browse Articles

Filter By:

  • Zafra Lerman talks to Nature Chemistry about embedding art in science education, and science in the pursuit of peace on Earth.

    • Anne Pichon
    Q&A
  • Therapies that destroy senescent cells could be used to alleviate age-related disease, yet conventional drugs often suffer from low selectivity and unwanted side effects. Now, a photosensitive agent has been developed that is activated in situ in senescent cells, enabling their selective elimination.

    • Yunjie Xu
    • Jong Seung Kim
    • Mingle Li
    News & Views
  • Borylated bicyclopentanes and bicyclohexanes are valuable compounds in drug research but are difficult to prepare. Now, an iridium-catalysed method has been developed for the borylation of the bridgehead tertiary C–H bonds in bicyclopentanes and bicyclohexanes, providing access to a variety of highly decorated bicyclic cores.

    • Isaac F. Yu
    • Jenna L. Manske
    • John F. Hartwig
    Article
  • Californium is difficult to prepare in its divalent state. Now, crystals of a Cf(II) crown–ether complex have been synthesized by reduction of a Cf(III) precursor with an Al/Hg amalgam. They exhibit 5f→6d transitions in the visible region and near-infrared emission that are highly sensitive to changes in the coordination environment.

    • Todd N. Poe
    • Harry Ramanantoanina
    • Cristian Celis-Barros
    Article
  • In contrast to phosphine and arsine oxides, stibine oxides have been challenging to isolate in monomeric forms as they tend to polymerize. Now, such a SbO moiety has been kinetically stabilized using sterically bulky protecting groups, and its reactivity found to be substantially different to that of its lighter pnictogen counterparts.

    • John S. Wenger
    • Monica Weng
    • Timothy C. Johnstone
    Article Open Access
  • Quasicrystals are intriguing structures that exhibit long-range positional correlations but no periodicity in real space. Now, T-shaped amphiphilic molecules featuring rigid cores have been found to self-assemble into a columnar liquid quasicrystal with dodecagonal symmetry. The honeycomb structure observed arises from a strictly quasiperiodic tessellation of square, triangular and trapezoidal tiles, rather than from random tiling.

    • Xiangbing Zeng
    • Benjamin Glettner
    • Carsten Tschierske
    Article
  • Charge-transfer emission of any type is extremely rare for coordination complexes of iron. Now, an Fe(iii) complex has been devised that shows two-colour luminescence arising from dual metal-to-ligand and ligand-to-metal charge-transfer emission.

    • Robert J. Ortiz
    • David E. Herbert
    News & Views
  • The structural analysis of small crystals has remained challenging. Now, the structure of a small organic molecule, rhodamine-6G, has been resolved from microcrystals using an X-ray free-electron laser and electron diffraction. The former showed better reliability for atomic coordinates, whereas the latter was more sensitive to charges; both techniques accurately determined the position of hydrogen atoms.

    • Kiyofumi Takaba
    • Saori Maki-Yonekura
    • Koji Yonekura
    Article
  • Crystals of hexachlorobenzene have now been shown to support the autonomous motion of water and particulate matter over their surface. Parallel microchannels present at the surface of the crystal gradually widen by sublimation, propelling droplets of condensed ambient water that can also transport microscopic amounts of material such as silver microparticles.

    • Patrick Commins
    • Marieh B. Al-Handawi
    • Panče Naumov
    Article
  • Stereogenic sp3-hybridized carbon centres are the principal building blocks of chiral organic molecules. Usually, these centres are configurationally fixed. Now, low-energy pericyclic rearrangements have been used to create rigid cage molecules with fluxional sp3-stereochemistry, influencing chiral information transfer. The sp3-carbon stereochemistry of the cages is inverted through strain-assisted Cope rearrangements.

    • Aisha N. Bismillah
    • Toby G. Johnson
    • Paul R. McGonigal
    Article Open Access
  • The molybdenum nitrogenase catalytic cofactor is composed of seven high-spin Fe sites making it difficult to study spectroscopically. Now it has been shown that 57Fe can be incorporated into a single site and that such site-selectively labelled samples provide insights into the cofactor’s electronic structure and the mechanism of biological nitrogen fixation.

    • Edward D. Badding
    • Suppachai Srisantitham
    • Daniel L. M. Suess
    Article
  • Serial rotation electron diffraction (SerialRED) enables rapid and reliable phase analysis and structure determination of complex polycrystalline materials that cannot be routinely characterized using X-ray diffraction. Five zeolite phases were identified in a single synthesis product by automated screening of hundreds of crystals, demonstrating the power of SerialRED for materials development.

    Research Briefing
  • The controlled functionalization of multihydrosilanes is challenging. Now, using a hydrogen-atom-transfer photocatalyst based on neutral eosin Y, a method for the diverse functionalization of hydrosilanes has been developed, enabling the stepwise on-demand decoration of silicon atoms. This approach is distinguished by its atom-, step-, redox- and catalyst-economy, metal-free nature, its versatility (>150 examples), modularity, selectivity and scalability.

    • Xuanzi Fan
    • Muliang Zhang
    • Jie Wu
    Article
  • The alkaloids crocagins are derived from a ribosomal peptide through a series of enzymatic post-translational modifications. A combination of biochemistry and structural biology techniques has now been used to elucidate this biosynthetic pathway, propose a mechanism for the formation of the tetracyclic core structure and enable genome mining for related natural products.

    • Sebastian Adam
    • Dazhong Zheng
    • Jesko Koehnke
    Article Open Access
  • Nanomachines are central to life and are becoming an important part of self-regulated nanotechnologies. Inspired by natural self-assembled nanosystems, it has been shown that artificial nanosystems can evolve and adopt regulatory functions upon fragmentation of their structures into multiple components that reassemble to form the same nanostructure.

    Research Briefing
  • Aromatic polynitrogen units can display both high stability and high energy content. A hexazine anion has now been identified in a complex compound, K9N56, which is formed at high pressures and temperatures under laser-heating in a diamond anvil cell. The [N6]4− ring is planar and proposed to be aromatic.

    • Dominique Laniel
    • Florian Trybel
    • Natalia Dubrovinskaia
    Article
  • Stabilization from aromatic electron delocalization is highly favourable so it is typically preserved in even grossly distorted molecules. Now, peripheral overcrowding of an aromatic tropylium has been shown to cause sufficient geometric strain to rupture aromaticity, forming a non-aromatic bicyclic system that is in rapid equilibrium with its aromatic counterpart.

    • Promeet K. Saha
    • Abhijit Mallick
    • Paul R. McGonigal
    Article Open Access
  • The time between accepting a position as an assistant professor and taking the role is exciting and unique. But how much work is required before you even start? Shira Joudan ponders which tasks are necessary and how many times one should interrupt a very well-deserved break.

    • Shira Joudan
    Thesis