Browse Articles

Filter By:

  • The umpolung functionalization of imines bears vast synthetic potential, but polarity inversion is less efficient compared with the carbonyl counterparts. Now, an alternative strategy exploiting chiral phosphoric acid catalytic aromatization has been developed, affording structures possessing a central chirality or a stereogenic C–N axis with high efficiency and enantiocontrol.

    • Ye-Hui Chen
    • Meng Duan
    • Bin Tan
  • Methods for transition-metal-catalysed enantioselective C(sp3)–S bond construction are underdeveloped. Now, by taking advantage of the biomimetic radical homolytic substitution manifold, the copper-catalysed enantioconvergent C(sp3)–S cross-coupling of racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles has been realized. This reaction provides access to an array of α-chiral alkyl organosulfur compounds.

    • Yu Tian
    • Xi-Tao Li
    • Xin-Yuan Liu
  • Borenium ions have traditionally served as main group (pre-)catalysts, and their use in materials-related applications have been limited by their instability. Now, a series of fully π-conjugated azaboraacenium ions derived from carbodicarbene have been developed that exhibit high air and moisture stability with full colour-tunable luminescence. Furthermore, these azaboraacene cations mimic the electronic structures of higher-order carbonaceous acenes while featuring enhanced resistance to photo-oxidation.

    • Chun-Lin Deng
    • Akachukwu D. Obi
    • Robert J. Gilliard Jr.
  • Light-induced azobenzene cis/trans isomerization has been extensively investigated, but the mechanical strength of its cis/trans structure is not well understood. Now it has been shown that cis azobenzene is mechanically less stable than the trans isomer due to its regiochemical structure, as revealed by single-molecule force spectroscopy.

    • Yiran Li
    • Bin Xue
    • Yi Cao
  • Activation of H2 by a metal–olefin complex is characterized experimentally and computationally using a nickel pincer complex, showing that the reaction proceeds via a direct ligand-to-ligand hydrogen transfer mechanism. An application of this cooperative H2-activation mechanism is demonstrated in the nickel-catalysed semihydrogenation of diphenylacetylene.

    • María L. G. Sansores-Paredes
    • Martin Lutz
    • Marc-Etienne Moret
  • Enzyme-initiated polymerization-induced self-assembly has been used to generate various biomimetic structures. Now, myoglobin’s activity is used for biocatalytic polymerization-induced self-assembly to generate vesicular artificial cells. As various cargoes can be encapsulated during polymerization, these artificial cells are capable of protein expression and can act as microreactors for distinct enzymatic reactions.

    • Andrea Belluati
    • Sètuhn Jimaja
    • Nico Bruns
    ArticleOpen Access
  • Many natural products are produced by non-ribosomal peptide synthetases in an assembly-line fashion. How these molecular machines orchestrate the biochemical sequences has remained elusive. It is now understood that an extended-conformation ensemble is needed to coordinate chemical-transformation steps whereas the biosynthesis directionality is driven by the enzyme’s innate conformational free energies.

    • Xun Sun
    • Jonas Alfermann
    • Haw Yang
  • Fluoroalkyl fragments are ubiquitous motifs in pharmaceuticals and agrochemicals, but their introduction to a given molecule typically involves expensive or difficult-to-handle reagents. Now, the photocatalysed hydrofluoroalkylation of alkenes has been achieved using simple and readily available fluoroalkyl carboxylic acids.

    • Fabio Juliá
    News & Views
  • Stereoselective decarboxylative protonation can produce diverse chiral molecules from widely available carboxylic acids. However, general and practical strategies are lacking. Now, a chiral spirocyclic phosphoric acid-catalysed decarboxylation of aminomalonic acids has enabled the modular synthesis of α-amino acids.

    • Xufeng Lin
    • Alemayehu Gashaw Woldegiorgis
    News & Views
  • Becoming an assistant professor brings with it numerous challenges, one of which is teaching undergraduate courses for the first time. Shira Joudan reflects on the ups and downs of setting up and delivering her first course.

    • Shira Joudan
  • Daniel Rabinovich outlines the story of insulin, the essential drug for the treatment of diabetes during the past century.

    • Daniel Rabinovich
    In Your Element
  • Recent improvements in de novo protein design are likely to support a broad range of applications, but larger complexes will be easier to create if a building block approach is adopted. Now protein filaments with tunable geometry can be made using assemblies that have both cyclic and superhelical symmetries aligned along the same axis.

    • Jeremy R. H. Tame
    News & Views
  • The synthesis of two-dimensional (2D) organic lateral heterostructures with desirable properties from organic single crystals remains challenging. Now, 2D organic lateral heterostructures have been produced by using a liquid-phase growth approach and vapour-phase growth method, enabling the structural inversion of organic lateral heterostructures via a two-step strategy.

    • Qiang Lv
    • Xue-Dong Wang
    • Liang-Sheng Liao
  • Polymethine dyes are bright and red-shifted fluorophores that lack an intrinsic turn-on mechanism, which leads to non-specific staining when applied to biological samples. Now the fluorescence of polymethine dyes was masked through an intracellular cyclization strategy that gets reversed upon binding an intended macromolecular target, providing specificity for live-cell imaging.

    • Annabell Martin
    • Pablo Rivera-Fuentes
    ArticleOpen Access
  • Late-stage functionalization of complex drug molecules is challenging. To address this problem, a discovery platform based on geometric deep learning and high-throughput experimentation was developed. The computational model predicts binary reaction outcome, reaction yield and regioselectivity with low error margins, enabling the functionalization of complex molecules without de novo synthesis.

    • David F. Nippa
    • Kenneth Atz
    • Gisbert Schneider
    ArticleOpen Access
  • Ribonucleoprotein granules are ubiquitous in living organisms with the protein and RNA components having distinct roles. In the absence of proteins, RNAs are shown to undergo phase separation upon heating. This transition is driven by desolvation entropy and ion-mediated crosslinking and is tuned by the chemical specificity of the RNA nucleobases.

    Research Briefing